

Motivation

- > Existing discriminative denoising methods such as multilayer perceptrons (MLP) train a separate model for each individual noise level.
- \succ They do not model the input noise variance.
- > Having a separate model/network for each noise level is not practical.
- > We designed a deep network that
 - \blacktriangleright explicitly models the input noise variance
 - can handle a range of noise levels
 - > is end-to-end trainable using standard gradient-based techniques.

Gaussian CRF Model

- $\succ X$: noisy input image, Y: output image
- $\succ \sigma^2$: noise variance, **G**: Mean subtraction matrix
- $\succ x_{ij}, y_{ij}$: column vectors representing $d \times d$ patches centered on pixel (i, j) in images **X** and **Y**, respectively.

$$E = \frac{1}{2\sigma^2} \sum_{ij} \left(\boldsymbol{Y}(i,j) - \boldsymbol{X}(i,j) \right)^2 + \frac{1}{2d^2} \sum_{ij} \boldsymbol{y}_{ij}^T \boldsymbol{G}^T \left(\boldsymbol{\Sigma}_{ij} \left(\boldsymbol{x}_{ij} \right) \right)^{-1} \boldsymbol{G} \boldsymbol{y}_{ij}$$

Quadratic unary potential

Quadratic pairwise potential

 $\succ \Sigma_{ii}(x_{ii})$: data-dependent parameters of the pairwise potential function

Experimental Results

- ➤ 400 training images (200 from BSD300 and 200 from PASCAL VOC 2012)
- \triangleright 8 × 8 image patches, 6 inference steps, 200 Ψ_k matrices, L-BFGS for training
- \succ Trained two networks, one for low noise levels ($\sigma \leq 25$) and one for high noise levels ($\sigma \geq 25$) \triangleright Used $\sigma = [8, 13, 18, 25]$ to train low noise network and $\sigma = [30, 35, 40, 50]$ to train high noise network

Comparison of MLP [2] and the proposed approach using a test set of 300 quantized images (100 from BSD300 and 200 from PASCAL VOC 2012). The noise levels for which MLP was trained are shown using a circular marker.

Deep Gaussian Conditional Random Field Network: A Model-based Deep Network for Discriminative Denoising

Raviteja Vemulapalli

University of Maryland, College Park.

Oncel Tuzel, Ming-Yu Liu

Mitsubishi Electric Research Laboratories, Cambridge.

Main contribution: A Gaussian CRF model-based end-to-end trainable deep network architecture that explicitly models the input noise variance.

Average 1 bith values for 00 mages from DSD500 dataset under the unquantized setting													
Test σ	ARF	LLSC	EPLL	opt-MRF	ClusteringSR	NCSR	BM3D	MLP	WNNM	CSF	RTF ₅	TRD	DGCRF ₈
15	30.70	31.27	31.19	31.18	31.08	31.19	31.08	-	31.37	31.24	-	31.43	31.43
25	28.20	28.70	28.68	28.66	28.59	28.61	28.56	28.85	28.83	28.72	28.75	28.95	28.89

Average PSNR values for 68 images from BSD300 dataset under the quantized setting

Test σ	LLSC	EPLL	opt-MRF	ClusteringSR	NCSR	BM3D	NL-Bayes	MLP	WNNM	CSF	RTF ₅	DGCRF ₈
15	31.09	31.11	31.06	30.93	31.13	31.03	31.06	1	31.20	-	-	31.36
25	28.24	28.46	28.40	28.26	28.41	28.38	28.43	28.77	28.48	28.53	28.74	28.73

Noise standard deviation $\sigma = 25$

Noisy image

Original image

$$X \rightarrow \begin{bmatrix} \text{Extract } d \times d \\ \text{mean subtracted} \\ \text{patches} \end{bmatrix} \xrightarrow{\text{Patches}} \begin{bmatrix} \text{Quadratic} \\ \{(W_k, b_k)\} \end{bmatrix} \xrightarrow{\text{Scores}} \xrightarrow{\text{Softmax}} \xrightarrow{\text{Weights}} \begin{bmatrix} \text{Combine states} \\ \{\gamma_{ij}^k\} \end{bmatrix} \xrightarrow{\text{Combine states}} \begin{bmatrix} \text{Quadratic} \\ \{W_k, b_k\} \end{bmatrix} \xrightarrow{\text{Softmax}} \xrightarrow{\text{Weights}} \xrightarrow{\text{Combine states}} \begin{bmatrix} \text{Quadratic} \\ \{W_k, b_k\} \end{bmatrix} \xrightarrow{\text{Softmax}} \xrightarrow{\text{Weights}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{Rotes}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{Softmax}} \xrightarrow{\text{Weights}} \xrightarrow{\text{Combine states}} \xrightarrow{\text{C$$

Average PSNR values for 68 images from RSD300 dataset under the unquantized setting

Noise standard deviation $\sigma = 50$

Noisy image

Our result

References

- 1. D. Zoran and Y. Weiss. From Learning Models of Natural Image Patches to Whole Image Restoration. In ICCV, 2011.
- 2. H. C. Burger, C. J. Schuler, and S. Harmeling. Image Denoising: Can Plain Neural Networks Compete with BM3D? In CVPR, 2012.
- 3. Y. Chen, W. Yu, and T. Pock. On Learning Optimized Reaction Diffusion Processes for Effective Image Restoration. In CVPR, 2015

RESEARCH LABORATORIES