
Introduction to Structured SVM

Raviteja Vemulapalli

University of Maryland, College Park

August 1, 2013

Raviteja Vemulapalli Slide number 1/22



Structured Output Learning

• Input: x ∈ X
• Output: y ∈ Y
• Learn a prediction function

• f : X −→ Y

• Typical scenarios
• Binary classification: Y = {±1}
• Regression: Y = R

• Structured output learning extends this concept to more
complex output spaces.

• Multi-class classification: Y = set of class labels
• Segmentation: Y = set of segmentation masks
• Object localization: Y = set of bounding boxes
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Structured Prediction

• Loss function: ∆ : Y × Y −→ R+ with ∆(y, y) = 0.

• Prediction function

f(x) = argmax
y∈Y

g(x, y)

• g : X × Y −→ R is an auxiliary function.

• This can be seen as a generalization of MAP inference in
which g(x, y) = p(y|x).
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Structured SVM

• g(x, y, w) = w>φ(x, y) where φ(x, y) is a joint feature map
defined on X × Y.

• f(x) = argmax
y∈Y

w>φ(x, y).

• Structured SVM learning: Learn the parameters w.

• Structured SVM prediction: Use the learned w to find f(x).
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Structured SVM Learning

• We learn w such that certain constraints on the training
data are satisfied.

• To avoid over-fitting, we use the standard Tikhonov
regularizer:

R(w) =
1

2
‖w‖22
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Structured SVM Learning - Margin rescaling

• Constraints: Some errors might be worse than others. So,
for every training sample (xi, yi) we would like to have

w>φ(xi, yi)− w>φ(xi, y) ≥ ∆(yi, y), ∀y ∈ Y.

⇐⇒ max
y∈Y
{∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)} ≤ 0.

• `(xi, yi, w) = max
y∈Y
{∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)}.

• `(xi, yi, w) is called margin-rescaled hinge loss.
• Note that `(xi, yi, w) ≥ 0, since y = yi makes it zero.
• `(xi, yi, w) is a convex function of w.

minimize
w

1

2
‖w‖22 +

C

N

N∑
i=1

`(xi, yi, w)
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Structured SVM Learning - Slack rescaling

• Constraints: Use fixed margin

w>φ(xi, yi)− w>φ(xi, y) ≥ 1, ∀y ∈ Y

⇐⇒ 1− w>φ(xi, yi) + w>φ(xi, y) ≤ 0, ∀y ∈ Y.

• Penalize the constraint violation according to ∆(yi, y).

`(xi, yi, w) = max
y∈Y

{∆(yi, y)(1− w>φ(xi, yi) + w>φ(xi, y))}

• `(xi, yi, w) is called slack-rescaled hinge loss.
• Note that `(xi, yi, w) ≥ 0, since y = yi makes it zero.
• `(xi, yi, w) is a convex function of w.

minimize
w

1

2
‖w‖22 +

C

N

N∑
i=1

`(xi, yi, w)
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Structured SVM Learning - Optimization

minimize
w

1

2
‖w‖22 +

C

N

N∑
i=1

`(xi, yi, w)

• `(xi, yi, w) is convex but not differentiable due to the max
operation.

• Gradient descent cannot be used.
• However, subgradient methods can be used.
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Structured SVM Learning - Optimization

Margin-rescaled hinge loss:

• `(xi, yi, w) = max
y∈Y

{∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)}

• ŷi = argmax
y∈Y

{∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)}

= argmax
y∈Y

{∆(yi, y) + w>φ(xi, y)} (loss-augmented prediction)

• Subgradient: φ(xi, ŷi)− φ(xi, yi)

Slack-rescaled hinge loss:

• `(xi, yi, w) = max
y∈Y

{∆(yi, y)(1− w>φ(xi, yi) + w>φ(xi, y))}

• ŷi = argmax
y∈Y

{∆(yi, y)(1− w>φ(xi, yi) + w>φ(xi, y))}

• Subgradient: ∆(yi, ŷi)(φ(xi, ŷi)− φ(xi, yi))
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Structured SVM - Formulation with slack variables

minimize
w

1

2
‖w‖22 +

C

N

N∑
i=1

`(xi, yi, w) (1)

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to `(xi, yi, w) ≤ ζi, for i = 1, 2, . . . , N.

(2)

Optimization problems (1) and (2) are equivalent.
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Structured SVM - Formulation with slack variables

Margin-rescaled structured SVM:

`(xi, yi, w) ≤ ζi

⇐⇒ max
y∈Y
{∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)} ≤ ζi

⇐⇒ ∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)− ζi ≤ 0, ∀y ∈ Y

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)− ζi ≤ 0, ∀y ∈ Y
ζi ≥ 0

• QP with number of constraints proportional to |Y|.
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Structured SVM - Formulation with slack variables
Slack-rescaled structured SVM:

`(xi, yi, w) ≤ ζi

⇐⇒ max
y∈Y
{∆(yi, y)(1− w>φ(xi, yi) + w>φ(xi, y))} ≤ ζi

⇐⇒ 1− w>φ(xi, yi) + w>φ(xi, y)− ζi

∆(yi, y)
≤ 0, ∀y ∈ Y \ yi

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

1− w>φ(xi, yi) + w>φ(xi, y)− ζi

∆(yi, y)
≤ 0, ∀y ∈ Y \ yi

ζi ≥ 0

• QP with number of constraints proportional to |Y|.
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Formulation with slack variables - Optimization

• Number of constraints is very large (proportional to |Y|).

• Difficult to solve the entire QP.
• Cutting plane method can be used.
• Start with out any constraints and iteratively add the most

violated constraint for each sample.
• A smaller QP solved in each iteration.
• Objective function will be ε-close to the global minimum

after O( 1
ε2

) iterations.
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Formulation with single slack variable
Margin-rescaled (formulation with multiple slack variables):

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)− ζi ≤ 0, ∀y ∈ Y
ζi ≥ 0

Margin-rescaled (formulation with single slack variable):

minimize
w,ζ

1

2
‖w‖22 + Cζ

subject to, for all (y(1), . . . , y(n)) ∈ Y × . . .× Y,

1

N

N∑
i=1

(
∆(yi, y(i))− w>φ(xi, yi) + w>φ(xi, y(i)

)
− ζ ≤ 0

ζ ≥ 0
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Formulation with single slack variable
Slack-rescaled (formulation with multiple slack variables):
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Formulation with single slack variable - Optimization

• Number of constraints is huge (proportional to |Y|N ).

• Difficult to solve the entire QP.
• Cutting plane method can be used.
• Start with out any constraints and iteratively add the most

violated constraint.
• A smaller QP solved in each iteration.
• Objective function will be ε-close to the global minimum

after O(1ε ) iterations.
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Structured SVM
Training:

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

∆(yi, y)− w>φ(xi, yi) + w>φ(xi, y)− ζi ≤ 0, ∀y ∈ Y
ζi ≥ 0

Prediction:
f(x) = argmax

y∈Y
w>φ(x, y)

• Output space Y
• Feature map φ(x, y)

• Loss function ∆(y, y
′
)
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Structured SVM - Multi-Class Classification

• Y = set of class labels

• Let φx(xi) be a feature map defined over X .
• Let φy(yi) be defined as the vector with 1 in the place of

current class and 0 elsewhere.

φy(y
i) = [0, . . . , 1, . . . , 0]>

• Let φ(xi, yi) = φy(y
i)⊗ φx(xi)

= [0, . . . , 0 | . . . | φx(xi) | . . . | 0, . . . , 0 |]

• Let w = [w>
1 , w

>
2 , . . . , w

>
k ]>.

• Zero-one loss: ∆(y, y
′
) = 1[y 6= y

′
]
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Structured SVM - Multi-Class Classification

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

w>φ(xi, yi)− w>φ(xi, y) ≥ ∆(yi, y)− ζi, ∀y ∈ Y
ζi ≥ 0

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

w>
yiφx(xi)− w>

y φx(xi) ≥ 1− ζi, ∀y ∈ Y \ yi

ζi ≥ 0

• Similar to the Cramer and Signer multiclass formulation.
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Structured SVM - Object Localization

• X = images

• Y = set of bounding boxes
• Let φx denote an image feature map.
• Let x|y denote the region in image x given by the bounding

box y
• Let φ(x, y) = φx(x|y)
• Area overlap loss:

∆(y, y
′
) = 1− area(y ∩ y′

)

area(y ∪ y′)
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Structured SVM - Object Localization

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

w>φ(xi, yi)− w>φ(xi, y) ≥ ∆(yi, y)− ζi, ∀y ∈ Y
ζi ≥ 0

minimize
w,ζ

1

2
‖w‖22 +

C

N

N∑
i=1

ζi

subject to, for i = 1, 2, . . . , N

w>φx(xi|yi)− w>φx(xi|y) ≥ 1− area(y ∩ y′
)

area(y ∪ y′)
− ζi, ∀y ∈ Y

ζi ≥ 0
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Structured SVM

Questions ??
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