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s Input: x € X
* Output: y € Y
* Learn a prediction function
s fi X — )
+ Typical scenarios
* Binary classification: Y = {£1}
* Regression: Y =R
- Structured output learning extends this concept to more
complex output spaces.

- Multi-class classification: ) = set of class labels
- Segmentation: ) = set of segmentation masks
 Object localization: Y = set of bounding boxes
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* Loss function: A: Y x Y — R4 with A(y,y) = 0.
 Prediction function

f(z) = argmax g(z,y)
yey

* g: X x)Y — Ris an auxiliary function.

+ This can be seen as a generalization of MAP inference in
which g(z,y) = p(y|z).
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+ Structured SVM learning: Learn the parameters w.

+ Structured SVM prediction: Use the learned w to find f(x).
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* We learn w such that certain constraints on the training
data are satisfied.

+ To avoid over-fitting, we use the standard Tikhonov
regularizer:

1
R(w) = 5w}
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minimize 5||w||§+NZ )t w)

« ((2%, 4t w) is convex but not differentiable due to the max
operation.

- Gradient descent cannot be used.
* However, subgradient methods can be used.
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minimize - v
i ||w||2+ ZC @)

subject to ¢(z, ', w) g C, fori=1,2,...,N.

Optimization problems (1) and (2) are equivalent.
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- Difficult to solve the entire QP.
- Cutting plane method can be used.

- Start with out any constraints and iteratively add the most
violated constraint for each sample.

- A smaller QP solved in each iteration.

+ Objective function will be e-close to the global minimum
after O(%;) iterations.
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- Difficult to solve the entire QP.
+ Cutting plane method can be used.

- Start with out any constraints and iteratively add the most
violated constraint.

- A smaller QP solved in each iteration.

+ Objective function will be e-close to the global minimum
after O(2) iterations.
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Prediction:
f(z) = argmax w' ¢(x, y)
yey
- QOutput space Y
- Feature map &é(z, y)
- Loss function A(y, y')



- Y = set of class labels



+ Y = set of class labels
- Let ¢,(2%) be a feature map defined over X.



+ Y = set of class labels
- Let ¢,(2%) be a feature map defined over X.

- Let ¢, (y*) be defined as the vector with 1 in the place of
current class and 0 elsewhere.



+ Y = set of class labels
- Let ¢,(2%) be a feature map defined over X.

- Let ¢, (y*) be defined as the vector with 1 in the place of
current class and 0 elsewhere.

© Let o(a',y') = ¢y(y') ® du(a)
—[0,0ey0] .. [ Go(@) ] .er |0,...,0]]



+ Y = set of class labels
- Let ¢,(2%) be a feature map defined over X.

- Let ¢, (y*) be defined as the vector with 1 in the place of
current class and 0 elsewhere.

© Let o(a',y') = ¢y(y') ® du(a)
—[0,0ey0] .. [ Go(@) ] .er |0,...,0]]

- Letw = [w,wg,...,wl]".



+ Y = set of class labels
- Let ¢,(2%) be a feature map defined over X.

- Let ¢, (y*) be defined as the vector with 1 in the place of
current class and 0 elsewhere.

© Let o(a',y') = ¢y(y') ® du(a)
—[0,0ey0] .. [ Go(@) ] .er |0,...,0]]

- Letw = [w,wg,...,wl]".

- Zero-one loss: A(y,y') = 1[y # v/
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+ Similar to the Cramer and Signer multiclass formulation.
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* X =images
+ )Y = set of bounding boxes
* Let ¢, denote an image feature map.

* Let x|, denote the region in image « given by the bounding
box y

* Let qb(x,y) = ¢m(x’y)
* Area overlap loss:

' area yﬂy/
Aly,y) =1~ #
area(yUy')
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Questions ??



