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Where are manifold features used in
computer vision?



+ Diffusion tensor magnetic resonance imaging (DT-MRI)
- Texture classification and segmentation

+ Object detection and tracking

+ Motion segmentation using structure tensors

+ Face and object recognition from image sets

* Human activity recognition using dynamical systems

+ Shape analysis



For features that lie in Euclidean spaces, classifiers based on
discriminative approaches such as linear discriminant analysis
(LDA), partial least squares (PLS) and support vector machines
(SVM) have been successfully used in various applications.



How can we extend these techniques to
manifold features?



How can we extend these techniques to
manifold features?

Define kernels on manifolds!



How to find good kernels for
classification of manifold features?
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Try out kernel learning!
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Let M be a Riemannian manifold (with known geometry) on
which the features lie.

Since we are interested in finding a kernel K (defined on M) for
the purpose of classification, we propose to learn both the
kernel and classifier jointly based on the following two criteria:

@ Risk minimization: For good classification performance,
the risk functional associated with the classifier should be
minimized.

@ Structure preservation: Since the features lie on a
Riemannian manifold with well defined structure, the kernel
should try to preserve the underlying manifold structure.
This criterion acts as a regularizer.
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Our general framework for learning a good kernel-classifier
combination can be represented as the following optimization
problem

min A I';(KC) + Te(W, K).

WK

« I'.(W, K) is the classifier cost expressed as a function of
the classifier parameters W and kernel K.

+ I';(K) is the manifold-structure cost expressed as a
function of kernel K.

< X is a parameter controlling the tradeoff between the two
cost functions.



Since learning the kernel K in a non-parametric fashion makes
the problem transductive, we follow the multiple kernel learning
approach and parametrize the kernel K as a positive linear
combination of known base kernels !, K2, ..., KM.

M
K= Z P K™ i, 2> 0.
m=1



SVM cost function:
max (&Tf— 1&T (**To K) &)
aeq 2

cQ={@ecRNr|0<a<CI,ay=0}.

+ 4/ is the vector of training labels.

* Ny is the number of training samples.

+ The operation o denotes the matrix Hadamard product.



A simple geodesic distance based manifold-structure cost:

N N
(Kii + Kjj — Kij — Kji — d3;)?
=1 i=1

+ K;; is the kernel value for samples i and j.
* d;j is the geodesic distance between samples i and j.



Combining both the costs, we get the following optimization

problem:
1 M
min max A||¢|2 ST Za' | gi" K™|a
Loy 1115 + (a ot R mzzzlum al,

M
subject to Y i (KJ' + K7 — K — KI7) — d2 = Gy,
m=1

for1 <i<j< Ny, and M>

where Q ={@ae R |0<d<Cl, a g:o}.



Combining both the costs, we get the following optimization
problem:

min max AIC)2 + (‘Tl - 50 <“ 0 Z Mme) *)
<7
M
subject to Y pm (K7 + Kt — K77 — K77) — di; = Gj,
m=1
forl1 <i<j <N, and Z>0
where Q = {@ € RV [0 <@ < CT, @'§=0}.

This is a convex optimization problem and can be solved
efficiently using gradient based methods.



Manifold-structure cost:

Ntr Ntr Nt'r Ntr M 2
= 2 m 2
Ji(i) = E E Gij = E E E pmpi; — dgj |
=1 j=i+1 i=1 j=i+1 \m=1

where MR = RO AR RO = O = IR



Manifold-structure cost:

Ntr Nt'r Nt'r Ntr M 2
A =33 @=3° 3 ( d) ,
= j=’i+1 =1 j=i+1 m=1

where pZ-L =K' + KJ"; — Kgl - KZL

J1(fZ) is convex and differentiable.



Manifold-structure cost:

Nir  Nep Nitr  Nir 2
D=3 3 o3 3 (Zump” ) |

i=1 j=i+1 i=1 j=i+1
where p?g =K' + K]"; — Kgl — KZL
J1(fZ) is convex and differentiable.

o.J Nir  Nir M
= 2 <2p?} (Z okl d%)) -

i=1 j=i+1 k=1



SVM classifier cost:

M
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SVM classifier cost:

where Q = {@e RN |0<d@ < C1, a'y§=0}.

Jo(f2) is convex and differentiable if K™ > 0.
[Rakotomamonijy et al. JMLRO0S8]



SVM classifier cost:

M
L
= e ab E D K™a |,
2() = ma (a S0 (75" o mZ:lum )a

where Q = {@e RN |0<d@ < C1, a'y§=0}.

Jo(f2) is convex and differentiable if K™ > 0.
[Rakotomamonijy et al. JMLRO0S8]

Ntr Ntr

aJ: 1
8#_71:__22& yzy]

=1 j=1

where &* is the optimal solution for the above SVM dual
problem.
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Let J(@) = AJi(fi) + J2(iZ). Then, the kernel learning
optimization becomes

min J (77)
H
subject to i > 0.
J(f) is convex and differentiable if K™ > 0.

The above optimization problem can be solved using reduced
gradient descent method or any other standard algorithm used
for solving constrained convex optimization problems.
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First, we need to compute the pairwise geodesic distances d;;
between training samples.

Then, we need to solve the following optimization problem:

mﬁin A1 (i) + J2(f)

subjectto i > 0.
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+ Computation of .J; (f7):

Ntr Ntr Ntr Ntr M 2
AH=3 3 &3 3 ( d) .
i=1 j=i+1 i=1 j=i4+1 \m=1



Computation of the cost value for a given ji:

+ Computation of .J; (f7):

Nir  Nir Nir Ner 2
9-3 3 -3 3 (L w-4)

i=1 j=i+1 i=1 j=i+1

+ Computation of Jy(ii): Solve an SVM optimization problem

o1
. =T
J2(f) =max | &' 1 - zd "o E pm K™) )

m=1



Computation of the gradient at a given ji: Form = 1to M



Computation of the gradient at a given ji: Form = 1to M

8J Ny Nyr M
== > <2p?} (Z il — d%)) ,

i=1 j=i+1 k=1



Computation of the gradient at a given ji: Form = 1to M

aJ Ny Nyr M
== > <2p?} (Z il — d%)) ,

i=1 j=i+1 k=1
Ntr Ntr
E E a yzyj
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Computing the kernel values:

+ For each test point, we need to perform M x Ny, kernel
evaluations.



Computing the kernel values:

+ For each test point, we need to perform M x Ny, kernel
evaluations.

Decision function evaluation:

Nir
(Za yzZMm (zi, @ )+b-



+ Grassmann manifold G, ;4 is the set of all d-dimensional
linear subspaces of R™.



+ Grassmann manifold G, 4 is the set of all d-dimensional
linear subspaces of R™.

+ A linear subspace S on Grassmann manifold can be
represented by any n x d orthonormal matrix Y; whose
column space is S. Note that Y is not unique.



+ Grassmann manifold G, 4 is the set of all d-dimensional
linear subspaces of R™.

+ A linear subspace S on Grassmann manifold can be
represented by any n x d orthonormal matrix Y; whose
column space is S. Note that Y is not unique.

* The geodesic distance between two subspaces 51 and .5,
on Grassmann manifold is given by ||6]|2, where 61, ..., 6,
are the principal angles between S; and Ss.



+ Grassmann manifold G, 4 is the set of all d-dimensional
linear subspaces of R™.

+ A linear subspace S on Grassmann manifold can be
represented by any n x d orthonormal matrix Y; whose
column space is S. Note that Y is not unique.

* The geodesic distance between two subspaces 51 and .5,
on Grassmann manifold is given by ||6]|2, where 61, ..., 6,
are the principal angles between S; and Ss.

- § can be computed using 6; = cos™(«;) € [0, Z], where «;
are the singular values of Y] Yzo.
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Let ®p(S) = Y.Y.". Note that ®»(S) does not depend on the
choice of Y.

Projection-RBF kernels:
KB (81, 82) = exp (—7[|®p(S1) — p(S2) |1 F) -
Projection-polynomial kernels:

KPR (S, ) = (7 trace <‘I)P(51)T(I)p(52)>>d.

When d =~ = 1, K°Y is same as the projection kernel
introduced in [Hamm et al. ICMLO08].
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+ The set of all n x n symmetric positive definite (SPD)
matrices form a manifold.

+ Equipped with the affine-invariant Riemannian metric, the
geodesic distance distance between two SPD matrices C;
and Cj is given by

d
\I > In?Ai(Cy, Cy),

i=1

where \;(C1, C5) are the generalized Eigenvalues of C
and Cs.
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Let log(C) denote the matrix logarithm of a symmetric positive
definite matrix C.

LED-RBF kernels:
Kiog(C1,C2) = exp (—7|log(C1) — log(Ca)l[3) -

LED-polynomial kernels:

ICE%'V(CL Cy) = (’y trace (Iog(Cl)TIog(Cz)»d.

When d = v = 1, kP is same as the LED kernel introduced in
[Wang et al. CVPR12].



How to represent an image set?



Linear subspaces:

- Given multiple images of the same face or object, they can
be collectively represented using a lower dimensional
subspace obtained by applying PCA on the feature vectors
representing individual images.

Covariance features:

+ Alternatively, the image set can also be represented using
its natural second-order statistic, i.e., the covariance matrix.



ETH-80 object dataset [Leibe et al. CVPR03]

+ 8 objects categories with 10 different object instances in
each category.

- Each object instance is a set of images of the same object
captured under different views.

 For each category, we used 5 sets for training and 5 sets
for testing.



ETH-80 object dataset [Leibe et al. CVPR03]

+ 8 objects categories with 10 different object instances in
each category.

- Each object instance is a set of images of the same object
captured under different views.

 For each category, we used 5 sets for training and 5 sets
for testing.

YouTube Celebrities face dataset [Kim et al. CVPR08]
+ Multiple video clips of 47 subjects collected from YouTube.
+ Low resolution and highly compressed videos.

 For each class, we used 3 videos for training and 6 videos
for testing.
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+ Image sets were modeled using covariance features and
linear subspaces [Wang et al. CVPR12].

* In the case of linear subspaces, multiple Projection-RBF
and Projection-polynomial kernels were used.

* In the case of covariance features, multiple LED-RBF and
LED-polynomial kernels were used.



dataset | NN | S-MKL | GDA | Proj + PLS | "roposed

approach
YouTube | 62.8 | 64.3 | 65.7 67.7 70.8
ETH80 | 93.2 | 93.7 92.8 95.3 96.0

Table: Recognition rates for image set-based face and object
recognition tasks using linear subspaces.

dataset | NN | S-MKL | CDL- LDA | cDL- pLs | Froposed
approach

YouTube | 40.7 | 69.7 675 701 73.2

ETH80 | 92.7 | 93.7 945 965 98.2

Table: Recognition rates for image set-based face and object
recognition tasks using covariance features.
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