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Overview

• Motivation

• Problem formulation

• Optimization procedure

• Grassmann manifold

• Symmetric positive definite matrices

• Experimental results
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Manifold features

Where are manifold features used in
computer vision?
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Applications of manifold features

• Diffusion tensor magnetic resonance imaging (DT-MRI)

• Texture classification and segmentation

• Object detection and tracking

• Motion segmentation using structure tensors

• Face and object recognition from image sets

• Human activity recognition using dynamical systems

• Shape analysis
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Classification in Euclidean space

For features that lie in Euclidean spaces, classifiers based on
discriminative approaches such as linear discriminant analysis
(LDA), partial least squares (PLS) and support vector machines
(SVM) have been successfully used in various applications.
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Classification of manifold features

How can we extend these techniques to
manifold features?

Define kernels on manifolds!

Raviteja Vemulapalli Slide number 6/30



Classification of manifold features

How can we extend these techniques to
manifold features?

Define kernels on manifolds!

Raviteja Vemulapalli Slide number 6/30



Kernels for manifolds features

How to find good kernels for
classification of manifold features?

Try out kernel learning!
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Kernel learning for manifolds features

LetM be a Riemannian manifold (with known geometry) on
which the features lie.

Since we are interested in finding a kernel K (defined onM) for
the purpose of classification, we propose to learn both the
kernel and classifier jointly based on the following two criteria:

1 Risk minimization: For good classification performance,
the risk functional associated with the classifier should be
minimized.

2 Structure preservation: Since the features lie on a
Riemannian manifold with well defined structure, the kernel
should try to preserve the underlying manifold structure.
This criterion acts as a regularizer.
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Kernel learning for manifolds features

Our general framework for learning a good kernel-classifier
combination can be represented as the following optimization
problem

min
W,K

λ Γs(K) + Γc(W,K).

• Γc(W,K) is the classifier cost expressed as a function of
the classifier parameters W and kernel K.

• Γs(K) is the manifold-structure cost expressed as a
function of kernel K.

• λ is a parameter controlling the tradeoff between the two
cost functions.
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Kernel learning for manifolds features

Since learning the kernel K in a non-parametric fashion makes
the problem transductive, we follow the multiple kernel learning
approach and parametrize the kernel K as a positive linear
combination of known base kernels K1,K2, . . . ,KM .

K =

M∑
m=1

µmKm, µm ≥ 0.
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Classifier cost in kernel learning

SVM cost function:

max
~α∈Ω

(
~α>~1− 1

2
~α>
(
~y~y>o K

)
~α

)

• Ω = {~α ∈ RNtr | 0 ≤ ~α ≤ C~1, ~α>~y = 0}.
• ~y is the vector of training labels.
• Ntr is the number of training samples.
• The operation o denotes the matrix Hadamard product.
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Manifold-structure cost in kernel learning

A simple geodesic distance based manifold-structure cost:

N∑
i=1

N∑
i=1

(Kii +Kjj −Kij −Kji − d2
ij)

2

• Kij is the kernel value for samples i and j.
• dij is the geodesic distance between samples i and j.

Raviteja Vemulapalli Slide number 12/30



Kernel learning for manifolds features

Combining both the costs, we get the following optimization
problem:

min
~ζ, ~µ

max
~α∈Ω

λ‖~ζ‖22 +

(
~α>~1− 1

2
~α>

(
~y~y>o

M∑
m=1

µmK
m

)
~α

)
,

subject to
M∑
m=1

µm(Km
ii +Km

jj −Km
ij −Km

ji )− d2
ij = ζij ,

for 1 ≤ i < j ≤ Ntr and ~µ ≥ ~0,
where Ω = {~α ∈ RNtr | 0 ≤ ~α ≤ C~1, ~α>~y = 0}.

This is a convex optimization problem and can be solved
efficiently using gradient based methods.
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Kernel learning for manifolds features

Manifold-structure cost:

J1(~µ) =

Ntr∑
i=1

Ntr∑
j=i+1

ζ2
ij =

Ntr∑
i=1

Ntr∑
j=i+1

(
M∑
m=1

µmp
m
ij − d2

ij

)2

,

where pmij = Km
ii +Km

jj −Km
ij −Km

ji .

J1(~µ) is convex and differentiable.

∂J1

∂µm
=

Ntr∑
i=1

Ntr∑
j=i+1

(
2pmij

(
M∑
k=1

µkp
k
ij − d2

ij

))
.
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Kernel learning for manifolds features

SVM classifier cost:

J2(~µ) = max
~α∈Ω

(
~α>~1− 1

2
~α>(~y~y>o

M∑
m=1

µmK
m)~α

)
,

where Ω = {~α ∈ RNtr | 0 ≤ ~α ≤ C~1, ~α>~y = 0}.

J2(~µ) is convex and differentiable if Km � 0.
[Rakotomamonjy et al. JMLR08]

∂J2

∂µm
= −1

2

Ntr∑
i=1

Ntr∑
j=1

α∗iα
∗
jyiyjK

m
ij ,

where ~α∗ is the optimal solution for the above SVM dual
problem.
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Kernel learning for manifolds features

Let J(~µ) = λJ1(~µ) + J2(~µ). Then, the kernel learning
optimization becomes

min
~µ

J(~µ)

subject to ~µ ≥ 0.

J(~µ) is convex and differentiable if Km � 0.

The above optimization problem can be solved using reduced
gradient descent method or any other standard algorithm used
for solving constrained convex optimization problems.
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Computational aspects - Training

First, we need to compute the pairwise geodesic distances dij
between training samples.

Then, we need to solve the following optimization problem:

min
~µ

λJ1(~µ) + J2(~µ)

subject to ~µ ≥ 0.
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Computational aspects - Training

Computation of the cost value for a given ~µ:

• Computation of J1(~µ):

J1(~µ) =

Ntr∑
i=1

Ntr∑
j=i+1

ζ2
ij =

Ntr∑
i=1

Ntr∑
j=i+1

(
M∑
m=1

µmp
m
ij − d2

ij

)2

.

• Computation of J2(~µ): Solve an SVM optimization problem

J2(~µ) = max
~α∈Ω

(
~α>~1− 1

2
~α>(~y~y>o

M∑
m=1

µmK
m)~α

)
.
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Computational aspects - Training

Computation of the gradient at a given ~µ: For m = 1 to M

∂J1

∂µm
=

Ntr∑
i=1

Ntr∑
j=i+1

(
2pmij

(
M∑
k=1

µkp
k
ij − d2

ij

))
,

∂J2

∂µm
= −1

2

Ntr∑
i=1

Ntr∑
j=1

α∗iα
∗
jyiyjK

m
ij .
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Computational aspects - Testing

Computing the kernel values:
• For each test point, we need to perform M ×Ntr kernel

evaluations.

Decision function evaluation:

f(x) =

(
Ntr∑
i=1

α∗i yi

M∑
m=1

µmK
m(xi, x)

)
+ b.
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Grassmann manifold

• Grassmann manifold Gn,d is the set of all d-dimensional
linear subspaces of Rn.

• A linear subspace S on Grassmann manifold can be
represented by any n× d orthonormal matrix Ys whose
column space is S. Note that Ys is not unique.

• The geodesic distance between two subspaces S1 and S2

on Grassmann manifold is given by ‖~θ‖2, where θ1, . . . , θd
are the principal angles between S1 and S2.

• ~θ can be computed using θi = cos−1(αi) ∈ [0, π2 ], where αi
are the singular values of Y >s1Ys2.

Raviteja Vemulapalli Slide number 21/30



Grassmann manifold

• Grassmann manifold Gn,d is the set of all d-dimensional
linear subspaces of Rn.

• A linear subspace S on Grassmann manifold can be
represented by any n× d orthonormal matrix Ys whose
column space is S. Note that Ys is not unique.

• The geodesic distance between two subspaces S1 and S2

on Grassmann manifold is given by ‖~θ‖2, where θ1, . . . , θd
are the principal angles between S1 and S2.

• ~θ can be computed using θi = cos−1(αi) ∈ [0, π2 ], where αi
are the singular values of Y >s1Ys2.

Raviteja Vemulapalli Slide number 21/30



Grassmann manifold

• Grassmann manifold Gn,d is the set of all d-dimensional
linear subspaces of Rn.

• A linear subspace S on Grassmann manifold can be
represented by any n× d orthonormal matrix Ys whose
column space is S. Note that Ys is not unique.

• The geodesic distance between two subspaces S1 and S2

on Grassmann manifold is given by ‖~θ‖2, where θ1, . . . , θd
are the principal angles between S1 and S2.

• ~θ can be computed using θi = cos−1(αi) ∈ [0, π2 ], where αi
are the singular values of Y >s1Ys2.

Raviteja Vemulapalli Slide number 21/30



Grassmann manifold

• Grassmann manifold Gn,d is the set of all d-dimensional
linear subspaces of Rn.

• A linear subspace S on Grassmann manifold can be
represented by any n× d orthonormal matrix Ys whose
column space is S. Note that Ys is not unique.

• The geodesic distance between two subspaces S1 and S2

on Grassmann manifold is given by ‖~θ‖2, where θ1, . . . , θd
are the principal angles between S1 and S2.

• ~θ can be computed using θi = cos−1(αi) ∈ [0, π2 ], where αi
are the singular values of Y >s1Ys2.

Raviteja Vemulapalli Slide number 21/30



Grassmann manifold - Kernels

Let ΦP (S) = YsY
>
s . Note that ΦP (S) does not depend on the

choice of Ys.

Projection-RBF kernels:

Krbf
P (S1, S2) = exp

(
−γ‖ΦP (S1)− ΦP (S2)‖2F

)
.

Projection-polynomial kernels:

Kpoly
P (S1, S2) =

(
γ trace

(
ΦP (S1)>ΦP (S2)

))d
.

When d = γ = 1, Kpoly
P is same as the projection kernel

introduced in [Hamm et al. ICML08].

Raviteja Vemulapalli Slide number 22/30



Grassmann manifold - Kernels

Let ΦP (S) = YsY
>
s . Note that ΦP (S) does not depend on the

choice of Ys.

Projection-RBF kernels:

Krbf
P (S1, S2) = exp

(
−γ‖ΦP (S1)− ΦP (S2)‖2F

)
.

Projection-polynomial kernels:

Kpoly
P (S1, S2) =

(
γ trace

(
ΦP (S1)>ΦP (S2)

))d
.

When d = γ = 1, Kpoly
P is same as the projection kernel

introduced in [Hamm et al. ICML08].

Raviteja Vemulapalli Slide number 22/30



Grassmann manifold - Kernels

Let ΦP (S) = YsY
>
s . Note that ΦP (S) does not depend on the

choice of Ys.

Projection-RBF kernels:

Krbf
P (S1, S2) = exp

(
−γ‖ΦP (S1)− ΦP (S2)‖2F

)
.

Projection-polynomial kernels:

Kpoly
P (S1, S2) =

(
γ trace

(
ΦP (S1)>ΦP (S2)

))d
.

When d = γ = 1, Kpoly
P is same as the projection kernel

introduced in [Hamm et al. ICML08].

Raviteja Vemulapalli Slide number 22/30



Grassmann manifold - Kernels

Let ΦP (S) = YsY
>
s . Note that ΦP (S) does not depend on the

choice of Ys.

Projection-RBF kernels:

Krbf
P (S1, S2) = exp

(
−γ‖ΦP (S1)− ΦP (S2)‖2F

)
.

Projection-polynomial kernels:

Kpoly
P (S1, S2) =

(
γ trace

(
ΦP (S1)>ΦP (S2)

))d
.

When d = γ = 1, Kpoly
P is same as the projection kernel

introduced in [Hamm et al. ICML08].

Raviteja Vemulapalli Slide number 22/30



Symmetric positive definite matrices

• The set of all n× n symmetric positive definite (SPD)
matrices form a manifold.

• Equipped with the affine-invariant Riemannian metric, the
geodesic distance distance between two SPD matrices C1

and C2 is given by √√√√ d∑
i=1

ln2λi(C1, C2),

where λi(C1, C2) are the generalized Eigenvalues of C1

and C2.
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Symmetric positive definite matrices - Kernels

Let log(C) denote the matrix logarithm of a symmetric positive
definite matrix C.

LED-RBF kernels:

Krbf
log(C1, C2) = exp

(
−γ‖log(C1)− log(C2)‖2F

)
.

LED-polynomial kernels:

Kpoly
log (C1, C2) =

(
γ trace

(
log(C1)>log(C2)

))d
.

When d = γ = 1, Kpoly
log is same as the LED kernel introduced in

[Wang et al. CVPR12].
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.

When d = γ = 1, Kpoly
log is same as the LED kernel introduced in

[Wang et al. CVPR12].
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Experiments - Image set based recognition

How to represent an image set?
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Experiments - Image set based recognition

Linear subspaces:
• Given multiple images of the same face or object, they can

be collectively represented using a lower dimensional
subspace obtained by applying PCA on the feature vectors
representing individual images.

Covariance features:
• Alternatively, the image set can also be represented using

its natural second-order statistic, i.e., the covariance matrix.
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Experimental results - Image set based recognition

ETH-80 object dataset [Leibe et al. CVPR03]
• 8 objects categories with 10 different object instances in

each category.
• Each object instance is a set of images of the same object

captured under different views.
• For each category, we used 5 sets for training and 5 sets

for testing.

YouTube Celebrities face dataset [Kim et al. CVPR08]
• Multiple video clips of 47 subjects collected from YouTube.
• Low resolution and highly compressed videos.
• For each class, we used 3 videos for training and 6 videos

for testing.
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Experimental results - Image set based recognition

• Image sets were modeled using covariance features and
linear subspaces [Wang et al. CVPR12].

• In the case of linear subspaces, multiple Projection-RBF
and Projection-polynomial kernels were used.

• In the case of covariance features, multiple LED-RBF and
LED-polynomial kernels were used.
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Experimental results - Image set based recognition

dataset NN S-MKL GDA Proj + PLS
Proposed
approach

YouTube 62.8 64.3 65.7 67.7 70.8
ETH80 93.2 93.7 92.8 95.3 96.0

Table: Recognition rates for image set-based face and object
recognition tasks using linear subspaces.

dataset NN S-MKL CDL- LDA CDL- PLS
Proposed
approach

YouTube 40.7 69.7 67.5 70.1 73.2
ETH80 92.7 93.7 94.5 96.5 98.2

Table: Recognition rates for image set-based face and object
recognition tasks using covariance features.
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