Kernel Learning for Extrinsic Classification of Manifold Features

Raviteja Vemulapalli
Jaishanker K. Pillai
Professor Rama Chellappa

University of Maryland, College Park

Overview

- Motivation
- Problem formulation
- Optimization procedure
- Grassmann manifold
- Symmetric positive definite matrices
- Experimental results

Manifold features

Where are manifold features used in computer vision?

Applications of manifold features

- Diffusion tensor magnetic resonance imaging (DT-MRI)
- Texture classification and segmentation
- Object detection and tracking
- Motion segmentation using structure tensors
- Face and object recognition from image sets
- Human activity recognition using dynamical systems
- Shape analysis

Classification in Euclidean space

For features that lie in Euclidean spaces, classifiers based on discriminative approaches such as linear discriminant analysis (LDA), partial least squares (PLS) and support vector machines (SVM) have been successfully used in various applications.

Classification of manifold features

How can we extend these techniques to manifold features?

Classification of manifold features

How can we extend these techniques to manifold features?

Define kernels on manifolds!

Kernels for manifolds features

How to find good kernels for classification of manifold features?

Kernels for manifolds features

How to find good kernels for classification of manifold features?

Try out kernel learning!

Kernel learning for manifolds features

Let \mathcal{M} be a Riemannian manifold (with known geometry) on which the features lie.

Kernel learning for manifolds features

Let \mathcal{M} be a Riemannian manifold (with known geometry) on which the features lie.

Since we are interested in finding a kernel \mathcal{K} (defined on \mathcal{M}) for the purpose of classification, we propose to learn both the kernel and classifier jointly based on the following two criteria:

Kernel learning for manifolds features

Let \mathcal{M} be a Riemannian manifold (with known geometry) on which the features lie.

Since we are interested in finding a kernel \mathcal{K} (defined on \mathcal{M}) for the purpose of classification, we propose to learn both the kernel and classifier jointly based on the following two criteria:
(1) Risk minimization: For good classification performance, the risk functional associated with the classifier should be minimized.

Kernel learning for manifolds features

Let \mathcal{M} be a Riemannian manifold (with known geometry) on which the features lie.

Since we are interested in finding a kernel \mathcal{K} (defined on \mathcal{M}) for the purpose of classification, we propose to learn both the kernel and classifier jointly based on the following two criteria:
(1) Risk minimization: For good classification performance, the risk functional associated with the classifier should be minimized.
(2) Structure preservation: Since the features lie on a Riemannian manifold with well defined structure, the kernel should try to preserve the underlying manifold structure. This criterion acts as a regularizer.

Kernel learning for manifolds features

Our general framework for learning a good kernel-classifier combination can be represented as the following optimization problem

$$
\min _{W, \mathcal{K}} \lambda \Gamma_{s}(\mathcal{K})+\Gamma_{c}(W, \mathcal{K}) .
$$

Kernel learning for manifolds features

Our general framework for learning a good kernel-classifier combination can be represented as the following optimization problem

$$
\min _{W, \mathcal{K}} \lambda \Gamma_{s}(\mathcal{K})+\Gamma_{c}(W, \mathcal{K}) .
$$

- $\Gamma_{c}(W, \mathcal{K})$ is the classifier cost expressed as a function of the classifier parameters W and kernel \mathcal{K}.

Kernel learning for manifolds features

Our general framework for learning a good kernel-classifier combination can be represented as the following optimization problem

$$
\min _{W, \mathcal{K}} \lambda \Gamma_{s}(\mathcal{K})+\Gamma_{c}(W, \mathcal{K}) .
$$

- $\Gamma_{c}(W, \mathcal{K})$ is the classifier cost expressed as a function of the classifier parameters W and kernel \mathcal{K}.
- $\Gamma_{s}(\mathcal{K})$ is the manifold-structure cost expressed as a function of kernel \mathcal{K}.

Kernel learning for manifolds features

Our general framework for learning a good kernel-classifier combination can be represented as the following optimization problem

$$
\min _{W, \mathcal{K}} \lambda \Gamma_{s}(\mathcal{K})+\Gamma_{c}(W, \mathcal{K}) .
$$

- $\Gamma_{c}(W, \mathcal{K})$ is the classifier cost expressed as a function of the classifier parameters W and kernel \mathcal{K}.
- $\Gamma_{s}(\mathcal{K})$ is the manifold-structure cost expressed as a function of kernel \mathcal{K}.
- λ is a parameter controlling the tradeoff between the two cost functions.

Kernel learning for manifolds features

Since learning the kernel \mathcal{K} in a non-parametric fashion makes the problem transductive, we follow the multiple kernel learning approach and parametrize the kernel \mathcal{K} as a positive linear combination of known base kernels $\mathcal{K}^{1}, \mathcal{K}^{2}, \ldots, \mathcal{K}^{M}$.

$$
\mathcal{K}=\sum_{m=1}^{M} \mu_{m} \mathcal{K}^{m}, \mu_{m} \geq 0
$$

Classifier cost in kernel learning

SVM cost function:

$$
\max _{\vec{\alpha} \in \Omega}\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o K\right) \vec{\alpha}\right)
$$

- $\Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\}$.
- \vec{y} is the vector of training labels.
- $N_{t r}$ is the number of training samples.
- The operation o denotes the matrix Hadamard product.

Manifold-structure cost in kernel learning

A simple geodesic distance based manifold-structure cost:

$$
\sum_{i=1}^{N} \sum_{i=1}^{N}\left(K_{i i}+K_{j j}-K_{i j}-K_{j i}-d_{i j}^{2}\right)^{2}
$$

- $K_{i j}$ is the kernel value for samples i and j.
- $d_{i j}$ is the geodesic distance between samples i and j.

Kernel learning for manifolds features

Combining both the costs, we get the following optimization problem:

$$
\begin{aligned}
& \min _{\vec{\zeta}, \vec{\mu}} \max _{\vec{\alpha} \in \Omega} \lambda\|\vec{\zeta}\|_{2}^{2}+\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right), \\
& \text { subject to } \sum_{m=1}^{M} \mu_{m}\left(K_{i i}^{m}+K_{j j}^{m}-K_{i j}^{m}-K_{j i}^{m}\right)-d_{i j}^{2}=\zeta_{i j}, \\
& \quad \text { for } 1 \leq i<j \leq N_{t r} \text { and } \vec{\mu} \geq \overrightarrow{0}, \\
& \text { where } \Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\} .
\end{aligned}
$$

Kernel learning for manifolds features

Combining both the costs, we get the following optimization problem:

$$
\begin{aligned}
& \min _{\vec{\zeta}, \vec{\mu}} \max _{\vec{\alpha} \in \Omega} \lambda\|\vec{\zeta}\|_{2}^{2}+\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right), \\
& \text { subject to } \sum_{m=1}^{M} \mu_{m}\left(K_{i i}^{m}+K_{j j}^{m}-K_{i j}^{m}-K_{j i}^{m}\right)-d_{i j}^{2}=\zeta_{i j}, \\
& \quad \text { for } 1 \leq i<j \leq N_{t r} \text { and } \vec{\mu} \geq \overrightarrow{0}, \\
& \text { where } \Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\} .
\end{aligned}
$$

This is a convex optimization problem and can be solved efficiently using gradient based methods.

Kernel learning for manifolds features

Manifold-structure cost:

$$
J_{1}(\vec{\mu})=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}} \zeta_{i j}^{2}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}}\left(\sum_{m=1}^{M} \mu_{m} p_{i j}^{m}-d_{i j}^{2}\right)^{2},
$$

where $p_{i j}^{m}=K_{i i}^{m}+K_{j j}^{m}-K_{i j}^{m}-K_{j i}^{m}$.

Kernel learning for manifolds features

Manifold-structure cost:

$$
J_{1}(\vec{\mu})=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}} \zeta_{i j}^{2}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}}\left(\sum_{m=1}^{M} \mu_{m} p_{i j}^{m}-d_{i j}^{2}\right)^{2},
$$

where $p_{i j}^{m}=K_{i i}^{m}+K_{j j}^{m}-K_{i j}^{m}-K_{j i}^{m}$.
$J_{1}(\vec{\mu})$ is convex and differentiable.

Kernel learning for manifolds features

Manifold-structure cost:

$$
J_{1}(\vec{\mu})=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}} \zeta_{i j}^{2}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}}\left(\sum_{m=1}^{M} \mu_{m} p_{i j}^{m}-d_{i j}^{2}\right)^{2},
$$

where $p_{i j}^{m}=K_{i i}^{m}+K_{j j}^{m}-K_{i j}^{m}-K_{j i}^{m}$.
$J_{1}(\vec{\mu})$ is convex and differentiable.

$$
\frac{\partial J_{1}}{\partial \mu_{m}}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t} r}\left(2 p_{i j}^{m}\left(\sum_{k=1}^{M} \mu_{k} p_{i j}^{k}-d_{i j}^{2}\right)\right)
$$

Kernel learning for manifolds features

SVM classifier cost:

$$
J_{2}(\vec{\mu})=\max _{\vec{\alpha} \in \Omega}\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right),
$$

where $\Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\}$.

Kernel learning for manifolds features

SVM classifier cost:

$$
J_{2}(\vec{\mu})=\max _{\vec{\alpha} \in \Omega}\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right),
$$

where $\Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\}$.
$J_{2}(\vec{\mu})$ is convex and differentiable if $K^{m} \succ 0$.
[Rakotomamonjy et al. JMLR08]

Kernel learning for manifolds features

SVM classifier cost:

$$
J_{2}(\vec{\mu})=\max _{\vec{\alpha} \in \Omega}\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right),
$$

where $\Omega=\left\{\vec{\alpha} \in \mathcal{R}^{N_{t r}} \mid 0 \leq \vec{\alpha} \leq C \overrightarrow{1}, \vec{\alpha}^{\top} \vec{y}=0\right\}$.
$J_{2}(\vec{\mu})$ is convex and differentiable if $K^{m} \succ 0$.
[Rakotomamonjy et al. JMLR08]

$$
\frac{\partial J_{2}}{\partial \mu_{m}}=-\frac{1}{2} \sum_{i=1}^{N_{t r}} \sum_{j=1}^{N_{t r}} \alpha_{i}^{*} \alpha_{j}^{*} y_{i} y_{j} K_{i j}^{m}
$$

where $\vec{\alpha}^{*}$ is the optimal solution for the above SVM dual problem.

Kernel learning for manifolds features

Let $J(\vec{\mu})=\lambda J_{1}(\vec{\mu})+J_{2}(\vec{\mu})$. Then, the kernel learning optimization becomes

$$
\begin{aligned}
& \min _{\vec{\mu}} J(\vec{\mu}) \\
& \text { subject to } \vec{\mu} \geq 0 .
\end{aligned}
$$

Kernel learning for manifolds features

Let $J(\vec{\mu})=\lambda J_{1}(\vec{\mu})+J_{2}(\vec{\mu})$. Then, the kernel learning optimization becomes

$$
\begin{aligned}
& \min _{\vec{\mu}} J(\vec{\mu}) \\
& \text { subject to } \vec{\mu} \geq 0 .
\end{aligned}
$$

$J(\vec{\mu})$ is convex and differentiable if $K^{m} \succ 0$.

Kernel learning for manifolds features

Let $J(\vec{\mu})=\lambda J_{1}(\vec{\mu})+J_{2}(\vec{\mu})$. Then, the kernel learning optimization becomes

$$
\begin{aligned}
& \min _{\vec{\mu}} J(\vec{\mu}) \\
& \text { subject to } \vec{\mu} \geq 0 .
\end{aligned}
$$

$J(\vec{\mu})$ is convex and differentiable if $K^{m} \succ 0$.
The above optimization problem can be solved using reduced gradient descent method or any other standard algorithm used for solving constrained convex optimization problems.

Computational aspects - Training

First, we need to compute the pairwise geodesic distances $d_{i j}$ between training samples.

Computational aspects - Training

First, we need to compute the pairwise geodesic distances $d_{i j}$ between training samples.

Then, we need to solve the following optimization problem:

$$
\begin{aligned}
& \min _{\vec{\mu}} \lambda J_{1}(\vec{\mu})+J_{2}(\vec{\mu}) \\
& \text { subject to } \vec{\mu} \geq 0 .
\end{aligned}
$$

Computational aspects - Training

Computation of the cost value for a given $\vec{\mu}$:

Computational aspects - Training

Computation of the cost value for a given $\vec{\mu}$:

- Computation of $J_{1}(\vec{\mu})$:

$$
J_{1}(\vec{\mu})=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}} \zeta_{i j}^{2}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}}\left(\sum_{m=1}^{M} \mu_{m} p_{i j}^{m}-d_{i j}^{2}\right)^{2}
$$

Computational aspects - Training

Computation of the cost value for a given $\vec{\mu}$:

- Computation of $J_{1}(\vec{\mu})$:

$$
J_{1}(\vec{\mu})=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}} \zeta_{i j}^{2}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t r}}\left(\sum_{m=1}^{M} \mu_{m} p_{i j}^{m}-d_{i j}^{2}\right)^{2} .
$$

- Computation of $J_{2}(\vec{\mu})$: Solve an SVM optimization problem

$$
J_{2}(\vec{\mu})=\max _{\vec{\alpha} \in \Omega}\left(\vec{\alpha}^{\top} \overrightarrow{1}-\frac{1}{2} \vec{\alpha}^{\top}\left(\vec{y} \vec{y}^{\top} o \sum_{m=1}^{M} \mu_{m} K^{m}\right) \vec{\alpha}\right) .
$$

Computational aspects - Training

Computation of the gradient at a given $\vec{\mu}$: For $m=1$ to M

Computational aspects - Training

Computation of the gradient at a given $\vec{\mu}$: For $m=1$ to M

$$
\frac{\partial J_{1}}{\partial \mu_{m}}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t} r}\left(2 p_{i j}^{m}\left(\sum_{k=1}^{M} \mu_{k} p_{i j}^{k}-d_{i j}^{2}\right)\right)
$$

Computational aspects - Training

Computation of the gradient at a given $\vec{\mu}$: For $m=1$ to M

$$
\begin{gathered}
\frac{\partial J_{1}}{\partial \mu_{m}}=\sum_{i=1}^{N_{t r}} \sum_{j=i+1}^{N_{t} r}\left(2 p_{i j}^{m}\left(\sum_{k=1}^{M} \mu_{k} p_{i j}^{k}-d_{i j}^{2}\right)\right) \\
\frac{\partial J_{2}}{\partial \mu_{m}}=-\frac{1}{2} \sum_{i=1}^{N_{t r}} \sum_{j=1}^{N_{t r}} \alpha_{i}^{*} \alpha_{j}^{*} y_{i} y_{j} K_{i j}^{m}
\end{gathered}
$$

Computational aspects - Testing

Computing the kernel values:

- For each test point, we need to perform $M \times N_{t r}$ kernel evaluations.

Computational aspects - Testing

Computing the kernel values:

- For each test point, we need to perform $M \times N_{t r}$ kernel evaluations.

Decision function evaluation:

$$
f(x)=\left(\sum_{i=1}^{N_{t r}} \alpha_{i}^{*} y_{i} \sum_{m=1}^{M} \mu_{m} K^{m}\left(x_{i}, x\right)\right)+b .
$$

Grassmann manifold

- Grassmann manifold $\mathcal{G}_{n, d}$ is the set of all d-dimensional linear subspaces of \mathcal{R}^{n}.

Grassmann manifold

- Grassmann manifold $\mathcal{G}_{n, d}$ is the set of all d-dimensional linear subspaces of \mathcal{R}^{n}.
- A linear subspace S on Grassmann manifold can be represented by any $n \times d$ orthonormal matrix Y_{s} whose column space is S. Note that Y_{s} is not unique.

Grassmann manifold

- Grassmann manifold $\mathcal{G}_{n, d}$ is the set of all d-dimensional linear subspaces of \mathcal{R}^{n}.
- A linear subspace S on Grassmann manifold can be represented by any $n \times d$ orthonormal matrix Y_{s} whose column space is S. Note that Y_{s} is not unique.
- The geodesic distance between two subspaces S_{1} and S_{2} on Grassmann manifold is given by $\|\vec{\theta}\|_{2}$, where $\theta_{1}, \ldots, \theta_{d}$ are the principal angles between S_{1} and S_{2}.

Grassmann manifold

- Grassmann manifold $\mathcal{G}_{n, d}$ is the set of all d-dimensional linear subspaces of \mathcal{R}^{n}.
- A linear subspace S on Grassmann manifold can be represented by any $n \times d$ orthonormal matrix Y_{s} whose column space is S. Note that Y_{s} is not unique.
- The geodesic distance between two subspaces S_{1} and S_{2} on Grassmann manifold is given by $\|\vec{\theta}\|_{2}$, where $\theta_{1}, \ldots, \theta_{d}$ are the principal angles between S_{1} and S_{2}.
- $\vec{\theta}$ can be computed using $\theta_{i}=\cos ^{-1}\left(\alpha_{i}\right) \in\left[0, \frac{\pi}{2}\right]$, where α_{i} are the singular values of $Y_{s 1}^{\top} Y_{s 2}$.

Grassmann manifold - Kernels

Let $\Phi_{P}(S)=Y_{s} Y_{s}^{\top}$. Note that $\Phi_{P}(S)$ does not depend on the choice of Y_{s}.

Grassmann manifold - Kernels

Let $\Phi_{P}(S)=Y_{s} Y_{s}^{\top}$. Note that $\Phi_{P}(S)$ does not depend on the choice of Y_{s}.

Projection-RBF kernels:

$$
\mathcal{K}_{P}^{\mathrm{rbf}}\left(S_{1}, S_{2}\right)=\exp \left(-\gamma\left\|\Phi_{P}\left(S_{1}\right)-\Phi_{P}\left(S_{2}\right)\right\|_{F}^{2}\right) .
$$

Grassmann manifold - Kernels

Let $\Phi_{P}(S)=Y_{s} Y_{s}^{\top}$. Note that $\Phi_{P}(S)$ does not depend on the choice of Y_{s}.

Projection-RBF kernels:

$$
\mathcal{K}_{P}^{\mathrm{rbf}}\left(S_{1}, S_{2}\right)=\exp \left(-\gamma\left\|\Phi_{P}\left(S_{1}\right)-\Phi_{P}\left(S_{2}\right)\right\|_{F}^{2}\right) .
$$

Projection-polynomial kernels:

$$
\mathcal{K}_{P}^{\text {poly }}\left(S_{1}, S_{2}\right)=\left(\gamma \operatorname{trace}\left(\Phi_{P}\left(S_{1}\right)^{\top} \Phi_{P}\left(S_{2}\right)\right)\right)^{d}
$$

Grassmann manifold - Kernels

Let $\Phi_{P}(S)=Y_{s} Y_{s}^{\top}$. Note that $\Phi_{P}(S)$ does not depend on the choice of Y_{s}.

Projection-RBF kernels:

$$
\mathcal{K}_{P}^{\mathrm{rbf}}\left(S_{1}, S_{2}\right)=\exp \left(-\gamma\left\|\Phi_{P}\left(S_{1}\right)-\Phi_{P}\left(S_{2}\right)\right\|_{F}^{2}\right) .
$$

Projection-polynomial kernels:

$$
\mathcal{K}_{P}^{\text {poly }}\left(S_{1}, S_{2}\right)=\left(\gamma \operatorname{trace}\left(\Phi_{P}\left(S_{1}\right)^{\top} \Phi_{P}\left(S_{2}\right)\right)\right)^{d}
$$

When $d=\gamma=1, \mathcal{K}_{P}^{\text {poly }}$ is same as the projection kernel introduced in [Hamm et al. ICML08].

Symmetric positive definite matrices

- The set of all $n \times n$ symmetric positive definite (SPD) matrices form a manifold.

Symmetric positive definite matrices

- The set of all $n \times n$ symmetric positive definite (SPD) matrices form a manifold.
- Equipped with the affine-invariant Riemannian metric, the geodesic distance distance between two SPD matrices C_{1} and C_{2} is given by

$$
\sqrt{\sum_{i=1}^{d} \ln ^{2} \lambda_{i}\left(C_{1}, C_{2}\right)}
$$

where $\lambda_{i}\left(C_{1}, C_{2}\right)$ are the generalized Eigenvalues of C_{1} and C_{2}.

Symmetric positive definite matrices - Kernels

Let $\log (C)$ denote the matrix logarithm of a symmetric positive definite matrix C.

Symmetric positive definite matrices - Kernels

Let $\log (C)$ denote the matrix logarithm of a symmetric positive definite matrix C.

LED-RBF kernels:

$$
\mathcal{K}_{\mathrm{log}}^{\mathrm{bbf}}\left(C_{1}, C_{2}\right)=\exp \left(-\gamma\left\|\log \left(C_{1}\right)-\log \left(C_{2}\right)\right\|_{F}^{2}\right) .
$$

Symmetric positive definite matrices - Kernels

Let $\log (C)$ denote the matrix logarithm of a symmetric positive definite matrix C.

LED-RBF kernels:

$$
\mathcal{K}_{\mathrm{log}}^{\mathrm{rbf}}\left(C_{1}, C_{2}\right)=\exp \left(-\gamma\left\|\log \left(C_{1}\right)-\log \left(C_{2}\right)\right\|_{F}^{2}\right) .
$$

LED-polynomial kernels:

$$
\mathcal{K}_{\mathrm{log}}^{\text {poly }}\left(C_{1}, C_{2}\right)=\left(\gamma \operatorname{trace}\left(\log \left(C_{1}\right)^{\top} \log \left(C_{2}\right)\right)\right)^{d}
$$

Symmetric positive definite matrices - Kernels

Let $\log (C)$ denote the matrix logarithm of a symmetric positive definite matrix C.

LED-RBF kernels:

$$
\mathcal{K}_{\mathrm{log}}^{\mathrm{rbf}}\left(C_{1}, C_{2}\right)=\exp \left(-\gamma\left\|\log \left(C_{1}\right)-\log \left(C_{2}\right)\right\|_{F}^{2}\right) .
$$

LED-polynomial kernels:

$$
\mathcal{K}_{\mathrm{log}}^{\text {poly }}\left(C_{1}, C_{2}\right)=\left(\gamma \operatorname{trace}\left(\log \left(C_{1}\right)^{\top} \log \left(C_{2}\right)\right)\right)^{d}
$$

When $d=\gamma=1, \mathcal{K}_{\text {log }}^{\text {poly }}$ is same as the LED kernel introduced in [Wang et al. CVPR12].

Experiments - Image set based recognition

How to represent an image set?

Experiments - Image set based recognition

Linear subspaces:

- Given multiple images of the same face or object, they can be collectively represented using a lower dimensional subspace obtained by applying PCA on the feature vectors representing individual images.

Covariance features:

- Alternatively, the image set can also be represented using its natural second-order statistic, i.e., the covariance matrix.

Experimental results - Image set based recognition

ETH-80 object dataset [Leibe et al. CVPR03]

- 8 objects categories with 10 different object instances in each category.
- Each object instance is a set of images of the same object captured under different views.
- For each category, we used 5 sets for training and 5 sets for testing.

Experimental results - Image set based recognition

ETH-80 object dataset [Leibe et al. CVPR03]

- 8 objects categories with 10 different object instances in each category.
- Each object instance is a set of images of the same object captured under different views.
- For each category, we used 5 sets for training and 5 sets for testing.

YouTube Celebrities face dataset [Kim et al. CVPR08]

- Multiple video clips of 47 subjects collected from YouTube.
- Low resolution and highly compressed videos.
- For each class, we used 3 videos for training and 6 videos for testing.

Experimental results - Image set based recognition

- Image sets were modeled using covariance features and linear subspaces [Wang et al. CVPR12].

Experimental results - Image set based recognition

- Image sets were modeled using covariance features and linear subspaces [Wang et al. CVPR12].
- In the case of linear subspaces, multiple Projection-RBF and Projection-polynomial kernels were used.

Experimental results - Image set based recognition

- Image sets were modeled using covariance features and linear subspaces [Wang et al. CVPR12].
- In the case of linear subspaces, multiple Projection-RBF and Projection-polynomial kernels were used.
- In the case of covariance features, multiple LED-RBF and LED-polynomial kernels were used.

Experimental results - Image set based recognition

dataset	NN	S-MKL	GDA	Proj + PLS	Proposed approach
YouTube	62.8	64.3	65.7	67.7	70.8
ETH80	93.2	93.7	92.8	95.3	96.0

Table: Recognition rates for image set-based face and object recognition tasks using linear subspaces.

dataset	NN	S-MKL	CDL- LDA	CDL- PLS	Proposed approach
YouTube	40.7	69.7	67.5	70.1	73.2
ETH80	92.7	93.7	94.5	96.5	98.2

Table: Recognition rates for image set-based face and object recognition tasks using covariance features.

References

- A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," JMLR, vol. 9, pp. 2491-2521, 2008.
- J. Hamm and D. D. Lee, "Grassmann Discriminant Analysis: a Unifying View on Subspace-Based Learning," In ICML, 2008.
- R. Wang, H. Guo, L. S. Davis and Q. Dai, "Covariance Discriminative Learning: A Natural and Efficient Approach to Image Set Classification", In CVPR, 2012.
- B. Leibe and B. Schiele, "Analyzing Appearance and Contour Based Methods for Object Categorization", In CVPR, 2003.
- M. Kim, S. Kumar, V. Pavlovic and H. Rowley, "Face Tracking and Recognition with Visual Constraints in Real-World Videos", In CVPR, 2008.

