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Abstract

Recently, skeleton-based human action recognition has
been receiving significant attention from various research
communities due to the availability of depth sensors and
real-time depth-based 3D skeleton estimation algorithms.
In this work, we use rolling maps for recognizing human
actions from 3D skeletal data. The rolling map is a well-
defined mathematical concept that has not been explored
much by the vision community. First, we represent each
skeleton using the relative 3D rotations between various
body parts. Since 3D rotations are members of the special
orthogonal group SO3, our skeletal representation becomes
a point in the Lie group SO3 × . . . × SO3, which is also a
Riemannian manifold. Then, using this representation, we
model human actions as curves in this Lie group. Since
classification of curves in this non-Euclidean space is a dif-
ficult task, we unwrap the action curves onto the Lie algebra
so3 × . . .× so3 (which is a vector space) by combining the
logarithm map with rolling maps, and perform classifica-
tion in the Lie algebra. Experimental results on three action
datasets show that the proposed approach performs equally
well or better when compared to state-of-the-art.

1. Introduction
Human action recognition has been an active area of re-

search for the past several decades due to its wide range of
applications. Though a significant amount of work has been
done over the past few decades, recognizing human actions
from RGB videos still remains as a challenging problem due
to various nuisance factors like illumination changes, varia-
tions in view-point, occlusions and background clutter.

In the recent past, there has been an increased interest in
skeleton-based human action recognition approaches due to
the availability of cost-effective depth sensors and real-time
depth-based skeleton estimation algorithms [28]. These ap-
proaches consider the human body as an articulated system
of connected rigid segments, and describe human motion
using the temporal evolution of the spatial configuration of
these segments.
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Figure 1: Unwrapping an action sequence onto the Lie algebra by
rolling the Lie group SO3 × . . .× SO3.

Existing skeleton-based action recognition approaches
can be broadly divided into two main categories: joint-based
approaches and body part-based approaches. Joint-based
approaches consider human skeleton as a set of points, and
represent it using features like joint positions [5, 8, 9, 13,
16, 21, 26], joint orientations in a fixed coordinate system
[24, 37, 32, 22], pairwise relative joint positions [34, 35,
36, 39], etc. On the other hand, part-based approaches con-
sider human skeleton as a set of connected rigid segments,
and represent it with features like joint angles [18, 19, 31],
bio-inspired 3D features [6], individual part locations [38],
relative 3D geometry between parts [33], etc.

Noting that for human action recognition, the relative
3D geometry between various body parts provides a more
meaningful description than their absolute locations, [33]
used the relative 3D geometry between all pairs of body
parts to represent the human skeleton. Specifically, the rela-
tive 3D geometry between each pair of body parts was rep-
resented as a point in the special Euclidean group SE3 using
the full 3D rigid body transformation required to take one
body part to the position and orientation of the other. Using
this representation, human actions were modeled as curves
in the Lie group SE3 × . . . × SE3, where × denotes the
direct product between Lie groups. Since this Lie group is a
non-Euclidean manifold, action curves were mapped from
the Lie group to its Lie algebra using the logarithm map,
and action recognition was performed in the Lie algebra.
Instead of mapping to the Lie algebra, [1] obtained a lower-
dimensional representation for curves in SE3 × . . .×SE3,
by first representing them using the recently-proposed
transported square-root vector field [30], and then perform-
ing manifold functional principal component analysis.



Since the scale/size of the skeleton varies from subject to
subject, it is very important to normalize the skeletal data.
In [33], the authors chose one of the skeletons from the
training set as reference and normalized all the other skele-
tons (without changing the joint angles) such that their body
part lengths are equal to the corresponding part lengths in
the reference skeleton. Interestingly, while the translations
between various body parts change with this normalization,
the 3D rotations do not change. Hence, instead of explicitly
normalizing the skeletal data to handle scale variations, in
this work, we obtain a scale-invariant skeletal represen-
tation by using only the rotations to describe the relative
3D geometry between body parts. Apart from making the
skeletal representation scale-invariant, using only the rota-
tions also reduces the feature dimensionality by half (com-
pared to [33]) thereby speeding up the action recognition
pipeline. As shown later in the experiments section, this
rotation-based representation performs equally well when
compared to the full rigid body transformation-based repre-
sentation of [33].

Since 3D rotations are members of the special orthogo-
nal group SO3, our representation becomes a point in the
Lie group SO3 × . . . × SO3, which is also a Riemannian
manifold. A similar SO3-based representation was also
used in [22, 32] to represent human skeletons. However,
while [22, 32] used only the joint orientations, our skeletal
representation includes the 3D rotations between all pairs
of body parts. The special orthogonal group was also used
earlier for video-based action recognition in [15], where
a video sequence was considered as a 3D tensor and the
orthogonal matrices obtained by using high-order singular
value decomposition were considered as points in SO(3).

Classification of curves in the Lie group SO3×. . .×SO3

is a non-trivial task due to the non-Euclidean nature of the
underlying space. Similar to [33], we can overcome this
difficulty by mapping the action curves from the Lie group
SO3 × . . .× SO3 to its Lie algebra so3 × . . .× so3, which
is the tangent space at the identity element, using the log-
arithm map. 1 But, flattening the Lie group using the log-
arithm map at a single point P introduces distortions due
to which curves that are nearby in the Lie group can move
away from each other in the Lie algebra (especially when
they are not close to the point P ). Figure 2 (left) illustrates
this pictorially using the example of a sphere. Here, the lon-
gitudinal curves moves away from each other when mapped
to the tangent space at P using the logarithm map. Note that
though we use a sphere for illustration in Figure 2, the man-
ifold of interest here is SO3 × . . .× SO3.

To reduce the distortions introduced by flattening the Lie
group using the logarithm map at a single point, we combine
the logarithm map with rolling maps [10, 12, 25] in this

1Instead of identity element and Lie algebra, one can use Karcher mean
of training data and the tangent space at the Karcher mean.

Figure 2: Left: Logarithm map at point P , Right: Unwrapping
(via the logarithm map) while rolling along the nominal curve.

work. Rolling maps can be used to flatten the Lie group
SO3 × . . .× SO3 by unwrapping the action curves onto its
Lie algebra using the logarithm map while rolling. Figure 2
(right) illustrates the effect of unwrapping (via the logarithm
map) while rolling using the example of a sphere. When
rolled along the middle longitudinal curve, referred to as
the nominal curve in the figure, the other curves that are
close to the nominal curve on the sphere remain close to it
even after unwrapping onto the tangent space at P .

Though rolling map is a mathematically well-defined
concept, it has not been explored much by the computer vi-
sion community. Recently, Caseiro et al. [4] introduced the
rolling map to the vision community by using it for classi-
fication of manifold features. In [4], the Grassmann mani-
fold was first rolled as a rigid body over the tangent space
at identity, and the data samples were unwrapped onto this
tangent space. Then, classification was performed in this
tangent space. Rolling maps have also been used for inter-
polation on SO3 [11, 27] and Grassmann manifold [3].

In this work, we first compute a nominal curve for each
action category in SO3× . . .×SO3, and warp all the action
curves to these nominal curves using dynamic time warping
(DTW). This helps us to handle the rate variations. Then,
we roll SO3 ×. . .×SO3 (by rolling each SO3 individually)
over its Lie algebra so3×. . .×so3 along the nominal curves,
and unwrap all the action curves (via the logarithm map)
onto the Lie algebra while rolling. The main advantage of
unwrapping while rolling is that the distances between the
action curves and the nominal curves are preserved while
mapping the curves from the Lie group to the Lie algebra.
Finally, we perform classification in the Lie algebra using
a support vector machine (SVM). Our experimental results
show that flattening by unwrapping while rolling improves
the recognition performance when compared to flattening
by using the logarithm map at a single point.

In most of the prior works that used rolling maps, the
rolling curve was chosen as a geodesic curve [4, 11, 27].
But, in this work, we are interested in rolling SO3 along
the nominal action curves, which are usually non-geodesic.
While [4, 11, 12, 27] provide closed form expressions for
the rolling map when the rolling curve is a geodesic, they
do not explain how to compute the rolling map in closed
form when the rolling curve is non-geodesic. In this work,
we show how to obtain a piecewise smooth rolling map for
a given (discrete) non-geodesic rolling curve in SO3.



Contributions:

• We combine the logarithm and rolling maps to flatten the
special orthogonal group SO3 for performing human ac-
tion recognition from 3D skeletal data. The rolling map is
a mathematically well-defined concept that has not been
explored much by the vision community. To the best of
our knowledge, it was never used in the context of human
action recognition.

• Most existing works on rolling maps use a geodesic curve
as the rolling curve. They do not provide closed form
expressions for the rolling map in the case of a non-
geodesic rolling curve. In this work, we show how to
compute a piecewise smooth rolling map corresponding
to a given (discrete) non-geodesic rolling curve in SO3.

• We reduce the dimensionality of skeletal representation
by half compared to the se3-based representation of [33]
by using only 3D rotations to describe the relative
geometry between various body parts. We show that
this scale-invariant rotation-only representation performs
equally well when compared to the full rigid body
transformation-based representation of [33].

Organization: Section 2 provides the relevant background
information on various groups used in this paper and
section 3 introduces the rolling map. Section 4 presents the
rolling and unwrapping operations for SO3 and section 5
presents the proposed human action recognition approach.
Section 6 presents the experimental results and section 7
concludes the paper.

Notations: We useR to denote the set of real numbers and
In to denote the n × n identity matrix. The determinant,
trace, transpose, inverse and Frobenius norm of a matrix
A are denoted by |A|, trace(A), A>, A−1 and ‖A‖Fr re-
spectively. The tangent space to a manifold M at a point
p is denoted using TpM and its orthogonal complement is
denoted using (TpM)⊥. We use × to represent the direct
product between Lie groups.

2. Relevant Background - Groups
In this section, we briefly discuss the groups SOn, SEn,

SO2
n and SO2

nRn
2

, which will be used in later sections.

SOn: The special orthogonal group SOn is a matrix Lie
group formed by the set of all n × n matrices R satisfying
the following constraints: R>R = RR> = In, |R| = 1.
The elements of SOn act on points inRn via matrix-vector
multiplication:

SOn ◦ Rn → Rn, R ◦ p = Rp. (1)

The tangent space TR0
SOn at R0 ∈ SOn is the vector

space spanned by the set of all n × n matrices A such that

A = ΩR0 for some skew-symmetric matrix Ω. The tangent
space at In ∈ SOn is called the Lie algebra of SOn and
is denoted by son. The special orthogonal group forms a
Riemannian manifold with the inner product in each tangent
space given by the Frobenius inner product:

〈A1, A2〉R0
= trace(A>1 A2), A1, A2 ∈ TR0

SOn. (2)

Under this Riemannian metric, the exponential and loga-
rithm maps at R0 ∈ SOn are given by

expSOn(R0, A) = eAR
>
0 R0, A ∈ TR0

SOn,

logSOn(R0, R1) = log(R1R
>
0 )R0, R1 ∈ SOn,

(3)

where e and log denote the usual matrix exponential and
logarithm. The geodesic curve from R0 to R1 is given by
et log(R1R

>
0 )R0, t ∈ [0, 1], and the geodesic distance be-

tween R0 and R1 is given by ‖ logSOn(R0, R1)‖Fr.

Interpolation on SOn: Given R1, . . . , Rn ∈ SOn at time
instances t1, . . . , tn respectively, the following curve ζ(t)
defines a piecewise geodesic curve that passes through Ri
at time instance ti.

ζ(t) = expSOn

(
Ri,

t− ti
ti+1 − ti

Ai

)
for t ∈ [ti, ti+1], (4)

where Ai = logSOn (Ri, Ri+1) for i = 1, 2, . . . , n− 1.

SEn: The special Euclidean group SEn is a matrix Lie
group formed by the set of all (n + 1) × (n + 1) matrices

of the form E(R, ~d) =

[
R ~d
0 1

]
, R ∈ SOn, ~d ∈ Rn.

The elements of SEn represent rigid body motions in an
n-dimensional Euclidean space. The matrix R represents
the rotation and the vector ~d represents the translation. The
action of SEn onRn is defined by:

SEn ◦ Rn → Rn, (R, ~d) ◦ p = Rp+ ~d. (5)

The tangent space at In ∈ SEn is called the Lie algebra
of SEn and is denoted by sen. The Lie exponential and
logarithm maps between SEn and sen are given by

LexpSEn(B) = eB , B ∈ sen,

LlogSEn(E) = log(E), E ∈ SEn.
(6)

For both SOn and SEn, the group multiplication and
inversion are the usual matrix multiplication and inversion.
The group identity element is the n× n identity matrix In.

SO2
n = SOn × SOn : The group SO2

n is the direct product
of two special orthogonal groups. It is the set of all matrix
pairs (U, V ), where U, V ∈ SOn. The group multiplication
and inversion operations are defined as

(U2, V2) ? (U1, V1) = (U2U1, V2V1),

(U, V )−1 = (U>, V >),
(7)



and the group identity element is given by (In, In). The
group SO2

n acts onRn×n via

SO2
n ◦ Rn×n → Rn×n, (U, V ) ◦ Z = UZV >. (8)

SO2
nR

n2

: The group SO2
nR

n2

is the set of all matrix
triplets (U, V,X), where U, V ∈ SOn andX ∈ Rn×n. The
group multiplication and inversion operations are defined as

(U2, V2, X2)?(U1, V1, X1) = (U2U1, V2V1, U2X1V
>
2 +X2),

(U, V,X)−1 = (U>, V >,−U>XV ), (9)

and the group identity element is given by (In, In, 0). The
group SO2

nR
n2

acts onRn×n via

SO2
nR

n2

◦ Rn×n → Rn×n

(U, V,X) ◦ Z = UZV > +X.
(10)

3. Rolling Motion
For two m-dimensional Riemannian manifolds M and

M̄, both embedded in the same ambient Euclidean space
Rn (n ≥ m), the rolling motion describes how M rolls
over M̄ as a rigid body without slip and twist. A classical
example of such a motion is the rolling of 2-dimensional
sphere over the tangent plane at a point.

The curve {α(t) ∈ M ⊂ Rn : t ∈ [0, T ]} along which
the manifold M rolls is called the rolling curve and the
curve {ᾱ(t) ∈ M̄ ⊂ Rn : t ∈ [0, T ]}, where the rolling
curve touches the manifold M̄ while rolling, is called the
development curve of α on M̄.

Definition 1: [12, 25] A rolling map describing how M
rolls over M̄, without slip and twist, along a smooth rolling
curve α : [0, T ]→M, is a smooth map

h : [0, T ]→ SEn, t→ h(t) = (R(t), ~d(t)), (11)

satisfying the following conditions:

• Rolling conditions

ᾱ(t) := h(t) ◦ α(t) ∈ M̄,

Th(t)◦α(t)(h(t) ◦M) = Tᾱ(t)M̄,
(12)

• No-slip conditions

(ḣ(t) ◦ h(t)−1) ◦ ᾱ(t) = 0, (13)

• No-twist conditions

(ḣ(t) ◦ h(t)−1) ◦ Tᾱ(t)M̄ ⊂ (Tᾱ(t)M̄)⊥,

(ḣ(t) ◦ h(t)−1) ◦ (Tᾱ(t)M̄)⊥ ⊂ Tᾱ(t)M̄,
(14)

where for a point x ∈ Rn and a vector η ∈ Rn (i.e., there
exists a curve y : (−ε, ε) → Rn such that ẏ(0) = η), the
operations ḣ(t)◦x, (ḣ(t)◦h(t)−1)◦x and (ḣ(t)◦h(t)−1)◦η
are defined as

ḣ(t) ◦ x :=
d

ds
(h(s) ◦ x)|s=t, (15)

(ḣ(t) ◦ h(t)−1) ◦ x :=
d

ds
((h(s) ◦ h(t)−1) ◦ x)|s=t,

(ḣ(t) ◦ h(t)−1) ◦ η :=
d

ds
((ḣ(t) ◦ h(t)−1) ◦ y(s))|s=t.

Remark: Given any piecewise smooth development or
rolling curve, the above definition ensures the existence and
uniqueness of the corresponding rolling map [12, 25].

4. Rolling Special Orthogonal Group
In this work, we are interested in rolling SO3 over the

tangent plane TR0SO3 at a pointR0 ∈ SO3. Note that both
SO3 and TR0SO3 are 3-dimensional manifolds embedded
in the 9-dimensional Euclidean spaceR3×3. Hence, we can
describe the rolling of SO3 using a curve h(t) ∈ SE9.
However, in [12], it has been shown that for rolling SO3

over a tangent plane, the rotational and translational com-
ponents of the original special Euclidean group SE9 turn
out to be SO2

3 andR3×3 respectively. Therefore, the rolling
map can be represented using a curve c(t) ∈ SO2

3R
9.

Theorem 1 - Rolling maps for SO3:
Let {Ω(t) ∈ so3 | t ∈ [0, T ]} be any continuous curve. Let
c(t) = (U(t), V (t), X(t)) ∈ SO2

3R9 be the solution of

Ẋ(t) = Ω(t)R0, U̇(t) = −1

2
Ω(t)U(t),

V̇ (t) =
1

2
R>0 Ω(t)R0V (t),

(16)

satisfying c(0) = (I3, I3, 0). Then, the action of c(t) on
SO3 ⊂ R3×3 results in rolling of SO3 over the tangent
plane TR0SO3 with the rolling and development curves
given by

α(t) = U(t)>R0V (t) ∈ SO3,

ᾱ(t) = c(t) ◦ α(t) = R0 +X(t) ∈ TR0
SO3.

(17)

Proof: Please refer to [12] for the proof.

The above theorem says that every continuous curve Ω(t) in
the Lie algebra of SO3 defines a rolling map c(t) through
the set of differential equations (16).

Rolling along a geodesic: If Ω(t) = Ω = log(R1R
>
0 ),

then the solution to (16) is given by

U(t) = e−
1
2 tΩ, V (t) = R>0 e

1
2 tΩR0, X(t) = tΩR0. (18)
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Figure 3: Unwrapping the blue curve onto a tangent space while
rolling along the red curve.

In this case, the rolling curve

α(t) = U(t)>R0V (t) = etΩR0 = et log(R1R
>
0 )R0 (19)

is the geodesic from R0 to R1, and the development curve
is given by ᾱ(t) = R0 + tΩR0.

4.1. Rolling along a non-geodesic curve

Note that Theorem 1 starts with a curve Ω(t) ∈ so3 and
explains how to obtain the corresponding rolling map c(t)
and rolling curve α(t). It doesn’t say anything about how to
compute the rolling map c(t) starting from a rolling curve
α(t). But, in this work, we are interested in rolling SO3

along specific α(t), which are the nominal action curves
obtained using DTW. If the rolling curve α(t) is a geodesic,
then the corresponding rolling map c(t) can be computed
using (18). But, the nominal action curves along which we
want to roll are usually non-geodesic.

Let {R0, R1, . . . , RT } be the discrete representation of
the curve along which we want to roll SO3. In Theorem
2, we show how to obtain a piecewise smooth rolling map
c(t) such that the corresponding rolling curve α(t) passes
through Rt at time instance t for t = 0, 1, . . . , T .

Theorem 2: Let {R0, R1, . . . , RT } be the given (discrete)
rolling curve. Let Ω1,Ω2, . . . ,ΩT be T skew-symmetric
matrices defined recursively using

Ωn = log
(

e−
Ωn−1

2 . . . e−
Ω1
2 RnR

>
o e−

Ω1
2 e−

Ωn−1
2

)
. (20)

Let c(t) = (U(t), V (t), X(t)) be a curve defined as

U(t) = e−
(t−n+1)Ωn

2 e−
Ωn−1

2 . . . e−
Ω1
2 ,

V (t) = R>0 e
(t−n+1)Ωn

2 e
Ωn−1

2 . . . e
Ω1
2 R0,

X(t) =

n−1∑
i=1

ΩiR0 + (t− n+ 1)ΩnR0,

t ∈ [n− 1, n], n = 1, 2, . . . , T.

(21)

Then, the action of c(t) ∈ SO2
3R9 on SO3 results in rolling

of SO3 over the tangent plane TR0
SO3 with a rolling curve

α(t) that satisfies

α(n) = Rn, for n = 1, 2, . . . , T. (22)

Proof: Let {Ω(t) ∈ so3 | t ∈ [0, T ]} be a curve defined as

Ω(t) = 6Ωn
(
(t− n+ 1)− (t− n+ 1)2

)
,

t ∈ [n− 1, n], n = 1, 2, . . . , T.
(23)

For this Ω(t), the solution for differential equations (16)
is given by (21). Hence by Theorem 1, the action of c(t)
on SO3 results in rolling of SO3 over the tangent space
TR0

SO3 with the rolling curve given by

α(t) = U(t)>R0V (t)

= e
Ω1
2 . . . e

Ωn−1
2 e(t−n+1)Ωne

Ωn−1
2 . . . e

Ω1
2 R0,

t ∈ [n− 1, n], n = 1, 2, . . . , T. (24)

which satisfies

α(n) = e
Ω1
2 . . . e

Ωn−1
2 eΩne

Ωn−1
2 . . . e

Ω1
2 R0 = Rn,

for n = 0, 1, . . . , T.
(25)

�
4.2. Unwrapping while rolling

Rolling maps can be used to flatten SO3 by unwrapping
the action curves (while rolling) onto the tangent space at
a point using the logarithm map. Figure 3 illustrates this
pictorially. In this figure, the blue curve is unwrapped onto
a tangent space while rolling along the red curve.

Let c(t) = (U(t), V (t), X(t)) ∈ SO2
3R9 be the rolling

map corresponding to the rolling curve α(t) ∈ SO3. Let
ᾱ(t) ∈ Tα(0)SO3 be the development curve of α(t). Then,
unwrapping (using the logarithm map) of a curve β(t) ∈
SO3 while rolling along α(t) gives the following curve
β̄(t) ∈ Tα(0)SO3 [27]:

β̄(t) = logSO3
(α(0), c(t)oβ(t)− ᾱ(t) + α(0)) + ᾱ(t)

= logSO3

(
α(0), U(t)β(t)V (t)>

)
+ α(0) +X(t).

(26)

4.3. Advantage of unwrapping while rolling

The main motivation for using rolling maps in this work
is that flattening the SO3 by unwrapping (via the logarithm
map) the action curves while rolling is better than flattening
it by using the logarithm map at a single point.

Theorem 3: Let {α(t), β(t) ∈ SO3 : t ∈ [0, T ]} be
two curves. Let ᾱ(t), β̄(t) ∈ Tα(0)SO3 respectively be
the curves obtained by unwrapping (via the logarithm map)
α(t) and β(t) while rolling the SO3 over the tangent space
at α(0) along the curve α(t). Then, we have

dTα(0)SO3

(
β̄(t), ᾱ(t)

)
= dSO3

(β(t), α(t)) ∀t, (27)

where dSO3
represents the geodesic distance on SO3 and

dTα(0)SO3
represents the standard Euclidean distance in the

tangent space Tα(0)SO3.



Proof: Let c(t) = (U(t), V (t), X(t)) ∈ SO2
3R9 be the

rolling map corresponding to the rolling curve α(t). Then,
by (26) we have

β̄(t) = logSO3

(
α(0), U(t)β(t)V (t)>

)
+ α(0) +X(t).

(28)
Since α(t) is the rolling curve, ᾱ(t) = α(0) + X(t) from
Theorem 1. Hence, we have

dTα(0)SO3

(
β̄(t), ᾱ(t)

)
= ‖β̄(t)− ᾱ(t)‖Fr
= ‖ logSO3

(
α(0), U(t)β(t)V (t)>

)
‖Fr

= dSO3

(
α(0), U(t)β(t)V (t)>

)
= dSO3

(
U(t)>α(0)V (t), β(t)

)
= dSO3

(α(t), β(t)) .

(29)

Here, the second last equality follows from the fact that
dSO3

is bi-invariant [14]. �

As mentioned earlier, in this work, we first compute a
nominal curve for each action category, and warp all the ac-
tion curves to these nominal curves. Then, we roll the Lie
group along the nominal curves and unwrap all the action
curves onto the Lie algebra while rolling. As stated in Theo-
rem 3, the main advantage of flattening the action curves by
unwrapping while rolling is that the distances between the
action curves and the nominal curves are preserved. This
is not the case with flattening using the logarithm map at a
single point.
Alternative interpretation: The idea of unwrapping while
rolling along the nominal curve can also be interpreted
as the extension of the idea of tangent plane mapping at
Karcher mean from points to curves. When dealing with
points, Karcher mean is commonly used as the anchor point
for tangent plane projection. Since we are dealing with
curves rather than points in this work, the Karcher mean is
replaced by the mean curve. In the case of points, the log-
arithm map at Karcher mean is used to map the points to a
common tangent space. Since we are dealing with curves (a
curve can go through various points that are quite far apart),
using the logarithm map at a single point to flatten entire
curves is not a good idea because, as we move away from
the anchor point (which will happen in the case of curves),
the distortion due to the logarithm map increases. Instead,
it is better to use logarithm maps at multiple points spread
over the nominal curve. This is exactly what we are doing
while rolling and unwrapping.

5. Proposed Action Recognition Approach
Our 3D skeleton-based human action recognition system

consists of the following steps: (1) Skeletal representation,
(2) Nominal curve computation using DTW, (3) Rolling and
unwrapping, (4) Linear SVM classification.

Table 1: Algorithm for computing a nominal curve

Input: Curves γ1(t), . . . , γN (t) at t = 0, 1, . . . , T.

Maximum number of iterations max and threshold δ.

Output: Nominal curve γ(t) at t = 0, 1, . . . , T .

Initialization: γ(t) = γ1(t), iter = 0.
while iter < max

Warp each curve γi(t) to the nominal curve γ(t) using
DTW to get a warped curve γw

i (t).

Compute a new nominal γnew(t) using
γnew(t) = Karcher mean

(
{γw

i (t)}Ni=1

)
.

if
∑T

t=0 dist (γnew(t), γ(t)) ≤ δ
break

end
γ(t) = γnew(t); iter = iter + 1;

end

Skeletal representation: In this work, we represent a 3D
human skeleton using the relative 3D rotations between all
pairs of body parts. Since 3D rotations are members of the
Lie group SO3, our skeletal representation becomes a point
in the Lie group SO3 × . . . × SO3. As mentioned earlier,
using only the relative 3D rotations makes the skeletal rep-
resentation scale-invariant and reduces the feature dimen-
sionality by half compared to [33].

Nominal curves: Using the above skeletal representation,
we represent human actions as curves in the Lie group
SO3 × . . . × SO3. During training, for each action cat-
egory, we compute a nominal curve using the algorithm
summarized in Table 1, and warp all the curves to this nom-
inal using DTW. This step helps in handling rate variations.
For DTW computations, we use the squared Euclidean dis-
tance in the Lie algebra. We also performed DTW using the
geodesic distance in SO3, but did not get any improvement
in the final classification results. Hence, for faster compu-
tations, we use the Lie algebra distance in this paper. Note
that in order to compute nominal curves, all the action
curves must have same number of samples. For this, we
use the interpolation algorithm presented in section 2 and
re-sample the curves in SO3 × . . .× SO3. Interpolation on
SO3 × . . .× SO3 is performed by simultaneously interpo-
lating on individual SO3.

We note that the recently proposed transported square-
root vector field [30] representation of curves, which is
an extension of the earlier square-root velocity representa-
tion [29] to Riemannian manifolds, provides a distance met-
ric that is invariant to temporal warping (i,.e., the distance
between two curve does not change if both curves undergo
the same temporal warping). Using this distance metric for
DTW and nominal curve computations could further im-
prove our performance.



Figure 4: Proposed approach: The top row corresponds to the training phase and the bottom row corresponds to the test phase.

Rolling and unwrapping: In this step, we roll the Lie
group SO3× . . .×SO3 over its lie algebra so3× . . .× so3

(by rolling each SO3 individually over its Lie algebra)
along each nominal action curve, and unwrap all the action
curves onto the Lie algebra. The rolling map for a given
(discrete) rolling curve can be obtained using Theorem 2
and the unwrapping operation can be performed using (26).
Since a nominal action curve may not start from the identity
element (remember that Lie algebra is the tangent space at
the identity element), we first roll the Lie group from the
identity element to the starting point of the nominal curve
and then roll along the nominal curve.

SVM classification: In this step, we first convert each un-
wrapped action curve into a feature vector by concatenat-
ing all the temporal samples, and then classify these feature
vectors using a one-vs-all linear SVM classifier.

Figure 4 gives an overview of the proposed approach.
The top row shows all the steps involved in training and the
bottom row shows all the steps involved in testing.

6. Experiments
We evaluate the proposed human action recognition ap-

proach using three action datasets captured with Kinect sen-
sor: Florence3D-Action [23], MSRAction Pairs [20] and
G3D-Gaming [2]. The code used for our experiments can
be downloaded from http://ravitejav.weebly.
com/rolling.html

Florence3D-Action [23] dataset consists of nine different
daily actions like drink water, answer phone, read watch,
tight lace, etc. performed by 10 different subjects. Each
subject performed every action two or three times resulting
in a total of 215 action sequences. The 3D locations of 15
joints are provided with the dataset.

MSRAction Pairs [20] dataset consists of six action pairs
(12 actions in total) like pick up a box/put down a box, wear

a hat/take off a hat, etc. performed by 10 different subjects.
Each subject performed every action two or three times re-
sulting in a total of 353 action sequences. This dataset was
collected to analyze how the temporal order affects action
recognition. The 3D locations of 20 joints are provided with
the dataset.

G3D-Gaming [2] dataset consists of 20 different gaming
actions like golf swing, tennis serve, bowling, aim and fire
gun, etc. performed by 10 different subjects. Each subject
performed every action three or more times resulting in a
total of 663 action sequences. The 3D locations of 20 joints
are provided with the dataset.

Evaluation setting: We followed cross-subject test setting,
in which half of the subjects were used for training and the
other half were used for testing. All the results reported in
this paper were averaged over ten different random combi-
nations of training and test subjects.

Parameters: As explained in section 5, for each dataset, all
the action curves were re-sampled to have same length. The
reference length was chosen to be the maximum number
of samples in any curve in the dataset before re-sampling.
The value of SVM parameter C was chosen based on cross-
validation.

6.1. Unwrapping while rolling Vs logarithm map

In this work, we are using rolling and unwrapping for
flattening the Lie group SO3 × . . . × SO3. An alternative
way to flatten this Lie group is to map the action curves
to its Lie algebra using the logarithm map. Table 2 com-
pares the action recognition performance of both these ap-
proaches when a linear SVM classifier is used with the con-
catenated feature representation.

Note that the concatenated representation is nothing but
the vectorized version of unwrapped curves (without any
additional processing steps). Hence, the results obtained us-

http://ravitejav.weebly.com/rolling.html
http://ravitejav.weebly.com/rolling.html


Table 2: Comparison (in terms of classification accuracy) between
using the logarithm map at a point and unwrapping while rolling.

Approach Florence3D [23] MSRPairs [20] G3D [2]

Logarithm
86.83 92.96 87.82

map at a point

Unwrapping
89.82 94.09 87.95

while rolling

ing this representation directly compare the effects of using
the logarithm map at a point and unwrapping while rolling.
As we can see from Table 2, unwrapping while rolling out-
performs the logarithm map by 3% on Florence3D dataset
and by 1.1% on MSRPairs dataset. On G3D dataset, both
rolling and logarithm map perform equally well. These re-
sults suggest that it is better to flatten SO3 by unwrapping
while rolling instead of using the logarithm map at a point.

6.2. Comparison with state-of-the-art

Note that while we use a simple classification scheme
in which the Lie algebra curves are first vectorized by con-
catenating the temporal samples and then classified using
a linear SVM classifier, existing state-of-the-art approaches
like [1, 33] use additional processing steps like Fourier tem-
poral pyramid representation (FTP) [33] (originally pro-
posed by [34]), principal geodesic analysis [1], etc. While
our simple approach does produce impressive results, it may
not be sufficient to achieve state-of-the-art results. Hence,
to compare with the state-of-the-art approaches, we incor-
porate the FTP representation proposed by [34] into our
classification scheme. Instead of using the simple concate-
nated representation, we represent each unwrapped Lie al-
gebra curve using the FTP representation, and then classify
them using a linear SVM classifier.

Table 3 compares the results of the proposed approach
with state-of-the-art (skeleton-based) results reported on
Florence3D, MSRPairs and G3D datasets. As we can see,
the proposed approach performs better or equally well when
compared to the recent state-of-the-art skeleton-based ap-
proaches. Note that since the focus of this work is on
skeleton-based action recognition, we use only skeleton-
based approaches for comparison. Though combining
skeletal features with depth-based features may improve the
accuracy, feature fusion is beyond the scope of this work.

7. Conclusion and Future Work
In this work, we used rolling maps for flattening SO3

to perform human action recognition from 3D skeletal data.
We represented each human skeleton as a point in the Lie
group SO3 × . . . × SO3 using the relative 3D rotations
between all pairs of body parts. Using this skeletal rep-
resentation, we represented human actions as curves in
SO3× . . .×SO3. For each action category, we computed a

Table 3: Comparison with state-of-the-art.

Florence3D dataset
Multi-Part Bag-of-Poses [23] 82.00

Motion trajectories [7] 87.04

Elastic Functional Coding [1] 89.67

Relative 3D geometry [33] 90.71

Proposed (concatenated representation) 89.82

Proposed (FTP representation) 91.40

MSRPairs dataset
Relative 3D geometry [33] 93.65

Proposed (concatenated representation) 94.09

Proposed (FTP representation) 94.67

G3D dataset
RBM + HMM [17] 86.40

Relative 3D geometry [33] 91.09
Proposed (concatenated representation) 87.95

Proposed (FTP representation) 90.94

nominal curve and warped all the action curves to this nom-
inal using DTW. Then, we rolled SO3 × . . . × SO3 over
its Lie algebra along the nominal curves and unwrapped all
the action curves onto the Lie algebra. Finally, we repre-
sented the unwrapped curves using either the concatenated
representation or the FTP representation and classified them
using a one-vs-all linear SVM classifier. By evaluating on
three action datasets, we showed that flattening SO3 by un-
wrapping while rolling performs better than flattening SO3

by using logarithm map a single point. The proposed ap-
proach also outperforms various state-of-the-art skeleton-
based action recognition approaches.

Note that in order to roll along the nominal curves, we
should be able to compute the rolling map corresponding to
a given non-geodesic rolling curve. In this work, we showed
how to compute a piecewise smooth rolling map such that
the rolling curve passes through a given set of points in SO3

at given instances of time.
The rolling map is a general concept that can be used

with any Riemannian manifold. Hence, as part of future
work, we plan to use rolling maps for classification of time
series data on other manifolds like Grassmann manifold and
the manifold of symmetric positive definite matrices.
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